Binary grids to construct 8x8 Franklin panmagic squares

Choose 6 binary grids, each time A or B. That gives 2x2x2x2x2x2 is 64 possibilities.

 [A] H11 H12 H13 H14 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 H21 H22 H23 H24 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 V11 V12 V13 V14 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 V21 V22 V23 V24 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 [B] H11 H12 H13 H14 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 H21 H22 H23 H24 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 V11 V12 V13 V14 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 V21 V22 V23 V24 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

To get valid 8x8 magic squares choose one of the 64 combinations:

Combinations of binary grids

 H H H V V V 1 11 14 22 11 14 22 2 11 14 22 11 14 23 3 11 14 22 11 22 23 4 11 14 22