Binaire patronen

 

Kies 6 binaire patronen telkens uit of A of B. Dit geeft 2x2x2x2x2x2 is 64 keuzemogelijk-heden.

 

[A]                                                                      
                                                                           
                                                                           
      H11                  H12                  H13                   H14            
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
                                                                           
                                                                           
      H21                 H22                 H23                 H24      
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
                                                                           
                                                                           
      V11                 V12                 V13                 V14      
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1
                                                                           
                                                                           
      V21                 V22                 V23                 V24      
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1
                                                                           
                                                                           
                                                                           
[B]                                                                        

  

 

                                                                         
      H11               H12               H13               H14            
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0     1 1 0 0 1 0 0 1     1 1 0 0 0 1 1 0     1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1     0 0 1 1 0 1 1 0     0 0 1 1 1 0 0 1     0 0 1 1 1 1 0 0
                                                                           
                                                                           
      H21                 H22                 H23                 H24      
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
1 0 0 1 1 1 0 0     1 0 0 1 1 0 0 1     1 0 0 1 0 1 1 0     1 0 0 1 0 0 1 1
0 1 1 0 0 0 1 1     0 1 1 0 0 1 1 0     0 1 1 0 1 0 0 1     0 1 1 0 1 1 0 0
                                                                           
                                                                           
      V11                 V12                 V13                 V14      
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0
                                                                           
                                                                           
      V21                 V22                 V23                 V24      
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0     0 1 0 1 0 1 0 1     1 0 1 0 1 0 1 0

 

 

Je kunt de 6 binaire patronen niet willekeurig kiezen. Om alle getallen van 1 t/m 64 in het vierkant te krijgen moet je 3x H en 3x V kiezen en zijn er alleen de volgende 64 combinatiemogelijkheden:

 

Combinatiemogelijkheden binaire patronen 

 

H

H

H

V

V

V

1

11

14

22

11

14

22

2

11

14

22

11

14

23

3

11

14

22

11

22

23

4

11