### Binaire patronen

Kies 6 binaire patronen telkens uit of A of B. Dit geeft 2x2x2x2x2x2 is 64 keuzemogelijk-heden.

 [A] H11 H12 H13 H14 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 H21 H22 H23 H24 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 V11 V12 V13 V14 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 V21 V22 V23 V24 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 [B] H11 H12 H13 H14 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 H21 H22 H23 H24 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 V11 V12 V13 V14 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 V21 V22 V23 V24 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Je kunt de 6 binaire patronen niet willekeurig kiezen. Om alle getallen van 1 t/m 64 in het vierkant te krijgen moet je 3x H en 3x V kiezen en zijn er alleen de volgende 64 combinatiemogelijkheden:

Combinatiemogelijkheden binaire patronen

 H H H V V V 1 11 14 22 11 14 22 2 11 14 22 11 14 23 3 11 14 22 11 22 23 4 11