Â
It is possible to use the shiftmethod to get a more tight structure of the panmagic 15x15 square.
Â
You have to puzzle to get the first row. Construct a 3x5 = 5x3 matrix:
Â
Â
 Matrix 3x5                               =        Matrix 5x3Â
0 |
9 |
12 |
 |
21 |
 |  |
0 |
9 |
12 |
 |
21 |
1 |
14 |
6 |
 |
21 |
 |  |
1 |
14 |
6 |
 |
21 |
11 |
2 |
8 |
 |
21 |
 |  |
11 |
2 |
8 |
 |
21 |
13 |
3 |
5 |
 |
21 |
 |  |
13 |
3 |
5 |
 |
21 |
10 |
7 |
4 |
 |
21 |
 |  |
10 |
7 |
4 |
 |
21 |
 |  |  |  |  |  |  |  |  |  |  |  |
35 |
35 |
35 |
 |  |  |  |
35 |
35 |
35 |
 |  |
Â
Â
The magic sum of 0 up to 14 is 105. In the matrix the sum of each column is (5/15 x 105 =) 35 and the sum of each row is (3/15 x 105 =) 21 is. Put the numbers in the first row:
Â
 First row according to 3x5 matrix
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
Â
Â
 First row according to 5x3 matrix
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
Â
Â
Construct row 2 up to 15 by shifting the first row each time 4 places to the left.
Â
Â
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
 |  |  |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
 |  |  |  |  |  |  |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
 |  |  |  |  |  |  |  |  |  |  |
Â
Â
We have constructed the first grid. The second grid is a reflection (rotated by a quarter and mirrored) of the first grid. Take 15x number +1 from first grid and add 1x number from second grid to get a 15x15 panmagic square.
Â
Â
 Take 15x number + 1
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
Â
Â
 + 1x number
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
Â
Â
 = 15x15 panmagic squareÂ
4 |
122 |
110 |
18 |
76 |
141 |
180 |
71 |
219 |
205 |
194 |
37 |
158 |
102 |
58 |
82 |
143 |
177 |
73 |
214 |
197 |
185 |
33 |
151 |
96 |
60 |
11 |
129 |
115 |
29 |
221 |
204 |
190 |
44 |
157 |
98 |
57 |
13 |
124 |
107 |
20 |
78 |
136 |
171 |
75 |
153 |
91 |
51 |
15 |
131 |
114 |
25 |
89 |
142 |
173 |
72 |
223 |
199 |
182 |
35 |
133 |
109 |
17 |
80 |
138 |
166 |
66 |
225 |
206 |
189 |
40 |
164 |
97 |
53 |
12 |
149 |
172 |
68 |
222 |
208 |
184 |
32 |
155 |
93 |
46 |
6 |
135 |
116 |
24 |
85 |
210 |
191 |
39 |
160 |
104 |
52 |
8 |
132 |
118 |
19 |
77 |
140 |
168 |
61 |
216 |
95 |
48 |
1 |
126 |
120 |
26 |
84 |
145 |
179 |
67 |
218 |
207 |
193 |
34 |
152 |
117 |
28 |
79 |
137 |
170 |
63 |
211 |
201 |
195 |
41 |
159 |
100 |
59 |
7 |
128 |
175 |
74 |
217 |
203 |
192 |
43 |
154 |
92 |