See how René Chrétien used the Medjig method 3D to produce a 26x26x26 pantriagonal magic cube.
Take 1x number from he first grid consisting of a 2x2x2 'blown up' 13x13x13 magic cube and add 13x13x13x number from the same cell of the second grid with 2x2x2 Medjig blocks to get a 26x26x26 pantriagonal magic cube.
1x number from first grid with 2x2x2 'blown up' 13x13x13 magic cube [level 1]
1 |
1 |
2196 |
2196 |
2012 |
2012 |
1828 |
1828 |
1644 |
1644 |
1460 |
1460 |
1276 |
1276 |
1105 |
1105 |
921 |
921 |
737 |
737 |
553 |
553 |
369 |
369 |
185 |
185 |
1 |
1 |
2196 |
2196 |
2012 |
2012 |
1828 |
1828 |
1644 |
1644 |
1460 |
1460 |
1276 |
1276 |
1105 |
1105 |
921 |
921 |
737 |
737 |
553 |
553 |
369 |
369 |
185 |
185 |
1916 |
1916 |
1732 |
1732 |
1548 |
1548 |
1377 |
1377 |
1193 |
1193 |
1178 |
1178 |
994 |
994 |
810 |
810 |
626 |
626 |
455 |
455 |
271 |
271 |
87 |
87 |
2100 |
2100 |
1916 |
1916 |
1732 |
1732 |
1548 |
1548 |
1377 |
1377 |
1193 |
1193 |
1178 |
1178 |
994 |
994 |
810 |
810 |
626 |
626 |
455 |
455 |
271 |
271 |
87 |
87 |
2100 |
2100 |
1634 |
1634 |
1450 |
1450 |
1266 |
1266 |
1082 |
1082 |
898 |
898 |
727 |
727 |
543 |
543 |
359 |
359 |
175 |
175 |
160 |
160 |
2173 |
2173 |
2002 |
2002 |
1818 |
1818 |
1634 |
1634 |
1450 |
1450 |
1266 |
1266 |
1082 |
1082 |
898 |
898 |
727 |
727 |
543 |
543 |
359 |
359 |
175 |
175 |
160 |
160 |
2173 |
2173 |
2002 |
2002 |
1818 |
1818 |
1352 |
1352 |
1168 |
1168 |
984 |
984 |
800 |
800 |
616 |
616 |
432 |
432 |
248 |
248 |
77 |
77 |
2090 |
2090 |
1906 |
1906 |
1722 |
1722 |
1538 |
1538 |
1354 |
1354 |
1352 |
1352 |
1168 |
1168 |
984 |
984 |
800 |
800 |
616 |
616 |
432 |
432 |
248 |
248 |
77 |
77 |
2090 |
2090 |
1906 |
1906 |
1722 |
1722 |
1538 |
1538 |
1354 |
1354 |
888 |
888 |
704 |
704 |
533 |
533 |
349 |
349 |
334 |
334 |
150 |
150 |
2163 |
2163 |
1979 |
1979 |
1795 |
1795 |
1624 |
1624 |
1440 |
1440 |
1256 |
1256 |
1072 |
1072 |
888 |
888 |
704 |
704 |
533 |
533 |
349 |
349 |
334 |
334 |
150 |
150 |
2163 |
2163 |
1979 |
1979 |
1795 |
1795 |
1624 |
1624 |
1440 |
1440 |
1256 |
1256 |
1072 |
1072 |
606 |
606 |
422 |
422 |
238 |
238 |
54 |
54 |
2080 |
2080 |
1896 |
1896 |
1712 |
1712 |
1528 |
1528 |
1513 |
1513 |
1329 |
1329 |
1145 |
1145 |
974 |
974 |
790 |
790 |
606 |
606 |
422 |
422 |
238 |
238 |
54 |
54 |
2080 |
2080 |
1896 |
1896 |
1712 |
1712 |
1528 |
1528 |
1513 |
1513 |
1329 |
1329 |
1145 |
1145 |
974 |
974 |
790 |
790 |
324 |
324 |
140 |
140 |
2153 |
2153 |
1969 |
1969 |
1785 |
1785 |
1601 |
1601 |
1430 |
1430 |
1246 |
1246 |
1062 |
1062 |
878 |
878 |
694 |
694 |
510 |
510 |
495 |
495 |
324 |
324 |
140 |
140 |
2153 |
2153 |
1969 |
1969 |
1785 |
1785 |
1601 |
1601 |
1430 |
1430 |
1246 |
1246 |
1062 |
1062 |
878 |
878 |
694 |
694 |
510 |
510 |
495 |
495 |
2057 |
2057 |
1873 |
1873 |
1702 |
1702 |
1687 |
1687 |
1503 |
1503 |
1319 |
1319 |
1135 |
1135 |
951 |
951 |
780 |
780 |
596 |
596 |
412 |
412 |
228 |
228 |
44 |
44 |
2057 |
2057 |
1873 |
1873 |
1702 |
1702 |
1687 |
1687 |
1503 |
1503 |
1319 |
1319 |
1135 |
1135 |
951 |
951 |
780 |
780 |
596 |
596 |
412 |
412 |
228 |
228 |
44 |
44 |
1775 |
1775 |
1591 |
1591 |
1407 |
1407 |
1223 |
1223 |
1052 |
1052 |
868 |
868 |
684 |
684 |
669 |
669 |
485 |
485 |
301 |
301 |
130 |
130 |
2143 |
2143 |
1959 |
1959 |
1775 |
1775 |
1591 |
1591 |
1407 |
1407 |
1223 |
1223 |
1052 |
1052 |
868 |
868 |
684 |
684 |
669 |
669 |
485 |
485 |
301 |
301 |
130 |
130 |
2143 |
2143 |
1959 |
1959 |
1493 |
1493 |
1309 |
1309 |
1125 |
1125 |
941 |
941 |
757 |
757 |
573 |
573 |
402 |
402 |
218 |
218 |
34 |
34 |
2047 |
2047 |
1863 |
1863 |
1848 |
1848 |
1677 |
1677 |
1493 |
1493 |
1309 |
1309 |
1125 |
1125 |
941 |
941 |
757 |
757 |
573 |
573 |
402 |
402 |
218 |
218 |
34 |
34 |
2047 |
2047 |
1863 |
1863 |
1848 |
1848 |
1677 |
1677 |
1029 |
1029 |
858 |
858 |
843 |
843 |
659 |
659 |
475 |
475 |
291 |
291 |
107 |
107 |
2120 |
2120 |
1949 |
1949 |
1765 |
1765 |
1581 |
1581 |
1397 |
1397 |
1213 |
1213 |
1029 |
1029 |
858 |
858 |
843 |
843 |
659 |
659 |
475 |
475 |
291 |
291 |
107 |
107 |
2120 |
2120 |
1949 |
1949 |
1765 |
1765 |
1581 |
1581 |
1397 |
1397 |
1213 |
1213 |
747 |
747 |
563 |
563 |
379 |
379 |
208 |
208 |
24 |
24 |
2037 |
2037 |
2022 |
2022 |
1838 |
1838 |
1654 |
1654 |
1470 |
1470 |
1299 |
1299 |
1115 |
1115 |
931 |
931 |
747 |
747 |
563 |
563 |
379 |
379 |
208 |
208 |
24 |
24 |
2037 |
2037 |
2022 |
2022 |
1838 |
1838 |
1654 |
1654 |
1470 |
1470 |
1299 |
1299 |
1115 |
1115 |
931 |
931 |
465 |
465 |
281 |
281 |
97 |
97 |
2110 |
2110 |
1926 |
1926 |
1755 |
1755 |
1571 |
1571 |
1387 |
1387 |
1203 |
1203 |
1019 |
1019 |
1004 |
1004 |
820 |
820 |
649 |
649 |
465 |
465 |
281 |
281 |
97 |
97 |
2110 |
2110 |
1926 |
1926 |
1755 |
1755 |
1571 |
1571 |
1387 |
1387 |
1203 |
1203 |
1019 |
1019 |
1004 |
1004 |
820 |
820 |
649 |
649 |
+13x13x13x number from second grid with 2x2x2 Medjig blocks [level 1]
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
3 |
5 |
6 |
5 |
5 |
6 |
3 |
0 |
0 |
5 |
0 |
5 |
5 |
3 |
5 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
0 |
6 |
0 |
3 |
0 |
3 |
6 |
5 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
5 |
6 |
0 |
3 |
0 |
6 |
5 |
0 |
6 |
3 |
5 |
6 |
5 |
5 |
6 |
|