Â
Voor uitleg over de Medjig methode, zie het 6x6 magisch vierkant.
Â
Â
Gebruik de '2x2 opgeblazen' versie van het 16x16 meest perfect magische vierkant als eerste patroon en een strak Medjig patroon als tweede patroon, dan kun je een 32x32 panmagisch vierkant m aken.
Â
Neem een getal uit een vakje vanuit het eerste patroon en tel hierbij 256 x getal van hetzelfde vakje vanuit het tweede patroon bij op.
Â
Â
1x getal
1 | 1 | 248 | 248 | 61 | 61 | 204 | 204 | 49 | 49 | 200 | 200 | 13 | 13 | 252 | 252 | 17 | 17 | 232 | 232 | 45 | 45 | 220 | 220 | 33 | 33 | 216 | 216 | 29 | 29 | 236 | 236 |
1 | 1 | 248 | 248 | 61 | 61 | 204 | 204 | 49 | 49 | 200 | 200 | 13 | 13 | 252 | 252 | 17 | 17 | 232 | 232 | 45 | 45 | 220 | 220 | 33 | 33 | 216 | 216 | 29 | 29 | 236 | 236 |
255 | 255 | 10 | 10 | 195 | 195 | 54 | 54 | 207 | 207 | 58 | 58 | 243 | 243 | 6 | 6 | 239 | 239 | 26 | 26 | 211 | 211 | 38 | 38 | 223 | 223 | 42 | 42 | 227 | 227 | 22 | 22 |
255 | 255 | 10 | 10 | 195 | 195 | 54 | 54 | 207 | 207 | 58 | 58 | 243 | 243 | 6 | 6 | 239 | 239 | 26 | 26 | 211 | 211 | 38 | 38 | 223 | 223 | 42 | 42 | 227 | 227 | 22 | 22 |
196 | 196 | 53 | 53 | 256 | 256 | 9 | 9 | 244 | 244 | 5 | 5 | 208 | 208 | 57 | 57 | 212 | 212 | 37 | 37 | 240 | 240 | 25 | 25 | 228 | 228 | 21 | 21 | 224 | 224 | 41 | 41 |
196 | 196 | 53 | 53 | 256 | 256 | 9 | 9 | 244 | 244 | 5 | 5 | 208 | 208 | 57 | 57 | 212 | 212 | 37 | 37 | 240 | 240 | 25 | 25 | 228 | 228 | 21 | 21 | 224 | 224 | 41 | 41 |
62 | 62 | 203 | 203 | 2 | 2 | 247 | 247 | 14 | 14 | 251 | 251 | 50 | 50 | 199 | 199 | 46 | 46 | 219 | 219 | 18 | 18 | 231 | 231 | 30 | 30 | 235 | 235 | 34 | 34 | 215 | 215 |
62 | 62 | 203 | 203 | 2 | 2 | 247 | 247 | 14 | 14 | 251 | 251 | 50 | 50 | 199 | 199 | 46 | 46 | 219 | 219 | 18 | 18 | 231 | 231 | 30 | 30 | 235 | 235 | 34 | 34 | 215 | 215 |
193 | 193 | 56 | 56 | 253 | 253 | 12 | 12 | 241 | 241 | 8 | 8 | 205 | 205 | 60 | 60 | 209 | 209 | 40 | 40 | 237 | 237 | 28 | 28 | 225 | 225 | 24 | 24 | 221 | 221 | 44 | 44 |
193 | 193 | 56 | 56 | 253 | 253 | 12 | 12 | 241 | 241 | 8 | 8 | 205 | 205 | 60 | 60 | 209 | 209 | 40 | 40 | 237 | 237 | 28 | 28 | 225 | 225 | 24 | 24 | 221 | 221 | 44 | 44 |
63 | 63 | 202 | 202 | 3 | 3 | 246 | 246 | 15 | 15 | 250 | 250 | 51 | 51 | 198 | 198 | 47 | 47 | 218 | 218 | 19 | 19 | 230 | 230 | 31 | 31 | 234 | 234 | 35 | 35 | 214 | 214 |
63 | 63 | 202 | 202 | 3 | 3 | 246 | 246 | 15 | 15 | 250 | 250 | 51 | 51 | 198 | 198 | 47 | 47 | 218 | 218 | 19 | 19 | 230 | 230 | 31 | 31 | 234 | 234 | 35 | 35 | 214 | 214 |
4 | 4 | 245 | 245 | 64 | 64 | 201 | 201 | 52 | 52 | 197 | 197 | 16 | 16 | 249 | 249 | 20 | 20 | 229 | 229 | 48 | 48 | 217 | 217 | 36 | 36 | 213 | 213 | 32 | 32 | 233 | 233 |
4 | 4 | 245 | 245 | 64 | 64 | 201 | 201 | 52 | 52 | 197 | 197 | 16 | 16 | 249 | 249 | 20 | 20 | 229 | 229 | 48 | 48 | 217 | 217 | 36 | 36 | 213 | 213 | 32 | 32 | 233 | 233 |
254 | 254 | 11 | 11 | 194 | 194 | 55 | 55 | 206 | 206 | 59 | 59 | 242 | 242 | 7 | 7 | 238 | 238 | 27 | 27 | 210 | 210 | 39 | 39 | 222 | 222 | 43 | 43 | 226 | 226 | 23 | 23 |
254 | 254 | 11 | 11 | 194 | 194 | 55 | 55 | 206 | 206 | 59 | 59 | 242 | 242 | 7 | 7 | 238 | 238 | 27 | 27 | 210 | 210 | 39 | 39 | 222 | 222 | 43 | 43 | 226 | 226 | 23 | 23 |
65 | 65 | 184 | 184 | 125 | 125 | 140 | 140 | 113 | 113 | 136 | 136 | 77 | 77 | 188 | 188 | 81 | 81 | 168 | 168 | 109 | 109 | 156 | 156 | 97 | 97 | 152 | 152 | 93 | 93 | 172 | 172 |
65 | 65 | 184 | 184 | 125 | 125 | 140 | 140 | 113 | 113 | 136 | 136 | 77 | 77 | 188 | 188 | 81 | 81 | 168 | 168 | 109 | 109 | 156 | 156 | 97 | 97 | 152 | 152 | 93 | 93 | 172 | 172 |
191 | 191 | 74 | 74 | 131 | 131 | 118 | 118 | 143 | 143 | 122 | 122 | 179 | 179 | 70 | 70 | 175 | 175 | 90 | 90 | 147 | 147 | 102 | 102 | 159 | 159 | 106 | 106 | 163 | 163 | 86 | 86 |
191 | 191 | 74 | 74 | 131 | 131 | 118 | 118 | 143 | 143 | 122 | 122 | 179 | 179 | 70 | 70 | 175 | 175 | 90 | 90 | 147 | 147 | 102 | 102 | 159 | 159 | 106 | 106 | 163 | 163 | 86 | 86 |
132 | 132 | 117 | 117 | 192 | 192 | 73 | 73 | 180 | 180 | 69 | 69 | 144 | 144 | 121 | 121 | 148 | 148 | 101 | 101 | 176 | 176 | 89 | 89 | 164 | 164 | 85 | 85 | 160 | 160 | 105 | 105 |
132 | 132 | 117 | 117 | 192 | 192 | 73 | 73 | 180 | 180 | 69 | 69 | 144 | 144 | 121 | 121 | 148 | 148 | 101 | 101 | 176 | 176 | 89 | 89 | 164 | 164 | 85 | 85 | 160 | 160 | 105 | 105 |
126 | 126 | 139 | 139 | 66 | 66 | 183 | 183 | 78 | 78 | 187 | 187 | 114 | 114 | 135 | 135 | 110 | 110 | 155 | 155 | 82 | 82 | 167 | 167 | 94 | 94 | 171 | 171 | 98 | 98 | 151 | 151 |
126 | 126 | 139 | 139 | 66 | 66 | 183 | 183 | 78 | 78 | 187 | 187 | 114 | 114 | 135 | 135 | 110 | 110 | 155 | 155 | 82 | 82 | 167 | 167 | 94 | 94 | 171 | 171 | 98 | 98 | 151 | 151 |
129 | 129 | 120 | 120 | 189 | 189 | 76 | 76 | 177 | 177 | 72 | 72 | 141 | 141 | 124 | 124 | 145 | 145 | 104 | 104 | 173 | 173 | 92 | 92 | 161 | 161 | 88 | 88 | 157 | 157 | 108 | 108 |
129 | 129 | 120 | 120 | 189 | 189 | 76 | 76 | 177 | 177 | 72 | 72 | 141 | 141 | 124 | 124 | 145 | 145 | 104 | 104 | 173 | 173 | 92 | 92 | 161 | 161 | 88 | 88 | 157 | 157 | 108 | 108 |
127 | 127 | 138 | 138 | 67 | 67 | 182 | 182 | 79 | 79 | 186 | 186 | 115 | 115 | 134 | 134 | 111 | 111 | 154 | 154 | 83 | 83 | 166 | 166 | 95 | 95 | 170 | 170 | 99 | 99 | 150 | 150 |
127 | 127 | 138 | 138 | 67 | 67 | 182 | 182 | 79 | 79 | 186 | 186 | 115 | 115 | 134 | 134 | 111 | 111 | 154 | 154 | 83 | 83 | 166 | 166 | 95 | 95 | 170 | 170 | 99 | 99 | 150 | 150 |
68 | 68 | 181 | 181 | 128 | 128 | 137 | 137 | 116 | 116 | 133 | 133 | 80 | 80 | 185 | 185 | 84 | 84 | 165 | 165 | 112 | 112 | 153 | 153 | 100 | 100 | 149 | 149 | 96 | 96 | 169 | 169 |
68 | 68 | 181 | 181 | 128 | 128 | 137 | 137 | 116 | 116 | 133 | 133 | 80 | 80 | 185 | 185 | 84 | 84 | 165 | 165 | 112 | 112 | 153 | 153 | 100 | 100 | 149 | 149 | 96 | 96 | 169 | 169 |
190 | 190 | 75 | 75 | 130 | 130 | 119 | 119 | 142 | 142 | 123 | 123 | 178 | 178 | 71 | 71 | 174 | 174 | 91 | 91 | 146 | 146 | 103 | 103 | 158 | 158 | 107 | 107 | 162 | 162 | 87 | 87 |
190 | 190 | 75 | 75 | 130 | 130 | 119 | 119 | 142 | 142 | 123 | 123 | 178 | 178 | 71 | 71 | 174 | 174 | 91 | 91 | 146 | 146 | 103 | 103 | 158 | 158 | 107 | 107 | 162 | 162 | 87 | 87 |
Â
Â
+ 256x getal
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
Â
Â
= 32x32 panmagisch vierkant
1 | 769 | 248 | 1016 | 61 | 829 | 204 | 972 | 49 | 817 | 200 | 968 | 13 | 781 | 252 | 1020 | 17 | 785 | 232 | 1000 | 45 | 813 | 220 | 988 | 33 | 801 | 216 | 984 | 29 | 797 | 236 | 1004 |
257 | 513 | 504 | 760 | 317 | 573 | 460 | 716 | 305 | 561 | 456 | 712 | 269 | 525 | 508 | 764 | 273 | 529 | 488 | 744 | 301 | 557 | 476 | 732 | 289 | 545 | 472 | 728 | 285 | 541 | 492 | 748 |
1023 | 255 | 778 | 10 | 963 | 195 | 822 | 54 | 975 | 207 | 826 | 58 | 1011 | 243 | 774 | 6 | 1007 | 239 | 794 | 26 | 979 | 211 | 806 | 38 | 991 | 223 | 810 | 42 | 995 | 227 | 790 | 22 |
767 | 511 | 522 | 266 | 707 | 451 | 566 | 310 | 719 | 463 | 570 | 314 | 755 | 499 | 518 | 262 | 751 | 495 | 538 | 282 | 723 | 467 | 550 | 294 | 735 | 479 | 554 | 298 | 739 | 483 | 534 | 278 |
196 | 964 | 53 | 821 | 256 | 1024 | 9 | 777 | 244 | 1012 | 5 | 773 | 208 | 976 | 57 | 825 | 212 | 980 | 37 | 805 | 240 | 1008 | 25 | 793 | 228 | 996 | 21 | 789 | 224 | 992 | 41 | 809 |
452 | 708 | 309 | 565 | 512 | 768 | 265 | 521 | 500 | 756 | 261 | 517 | 464 | 720 | 313 | 569 | 468 | 724 | 293 | 549 | 496 | 752 | 281 | 537 | 484 | 740 | 277 | 533 | 480 | 736 | 297 | 553 |
830 | 62 | 971 | 203 | 770 | 2 | 1015 | 247 | 782 | 14 | 1019 | 251 | 818 | 50 | 967 | 199 | 814 | 46 | 987 | 219 | 786 | 18 | 999 | 231 | 798 | 30 | 1003 | 235 | 802 | 34 | 983 | 215 |
574 | 318 | 715 | 459 | 514 | 258 | 759 | 503 | 526 | 270 | 763 | 507 | 562 | 306 | 711 | 455 | 558 | 302 | 731 | 475 | 530 | 274 | 743 | 487 | 542 | 286 | 747 | 491 | 546 | 290 | 727 | 471 |
193 | 961 | 56 | 824 | 253 | 1021 | 12 | 780 | 241 | 1009 | 8 | 776 | 205 | 973 | 60 | 828 | 209 | 977 | 40 | 808 | 237 | 1005 | 28 | 796 | 225 | 993 | 24 | 792 | 221 | 989 | 44 | 812 |
449 | 705 | 312 | 568 | 509 | 765 | 268 | 524 | 497 | 753 | 264 | 520 | 461 | 717 |