### Pan 7x7 in 9x9 magic square (2)

Construct a row grid and a column grid. Use the middle numbers 1 up to 7 to produce the panmagic 7x7 inlay square with the shift method. Puzzle the border.

1x number from row grid +1

 4 1 2 3 5 6 7 8 0 0 1 2 3 4 5 6 7 8 0 3 4 5 6 7 1 2 8 8 5 6 7 1 2 3 4 0 8 7 1 2 3 4 5 6 0 0 2 3 4 5 6 7 1 8 8 4 5 6 7 1 2 3 0 0 6 7 1 2 3 4 5 8 8 7 6 5 3 2 1 0 4

+9x number from column grid

 0 8 8 0 0 8 8 0 4 1 1 2 3 4 5 6 7 7 7 6 7 1 2 3 4 5 1 2 4 5 6 7 1 2 3 6 8 2 3 4 5 6 7 1 0 3 7 1 2 3 4 5 6 5 6 5 6 7 1 2 3 4 2 5 3 4 5 6 7 1 2 3 4 0 0 8 8 0 0 8 8

= Panmagic 7x7 in 9x9 magic square

 5 74 75 4 6 79 80 9 37 10 11 21 31 41 51 61 71 72 64 58 68 15 25 35 38 48 18 27 42 52 62 65 12 22 32 55 81 26 29 39 49 59 69 16 1 28 66 13 23 33 43 53 56 54 63 50 60 70 17 20 30 40 19 46 34 44 47 57 67 14 24 36 45 8 7 78 76 3 2 73 77

Use this method to construct inlaid squares of odd order from 5x5 to infinity.

See 5x57x79x911x1113x1315x1517x1719x1921x2123x2325x2527x2729x29 & 31x31

9x9, pan 7x7 in 9x9.xlsx