Shift methode (2)

 

Vul de eerste regel van het 1e vierkant met de getallen 0 t/m 8. Vul nu regel twee en drie in, door de eerste regel telkens 3 plaatsen naar links op te schuiven.

 

                                 1e vierkant, eerste drie regels

           

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

     

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

     

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

           

 

 

De eerste drie regels van het 1e patroon bestaan uit 3 subvierkantjes van 3x3. Maak de tweede drie regels door de volgorde van de drie kolommen van elk van de 3 subvierkantjes van de eerste regel te wijzigen in: 2-3-1. Maak de derde drie regels door de volgorde van de drie kolommen van elk van de 3 subvierkantjes van de eerste regel te wijzigen in: 3-1-2.

 

 

 1e patroon

0

1

2

3

4

5

6

7

8

3

4

5

6

7

8

0

1

2

6

7

8

0

1

2

3

4

5

1

2

0

4

5

3

7

8

6

4

5

3

7

8

6

1

2

0

7

8

6

1

2

0

4

5

3

2

0

1

5

3

4

8

6

7

5

3

4

8

6

7

2

0

1

8

6

7

2

0

1

5

3

4

 

 

Het 2e patroon is een reflectie (kwartslag gedraaid) van het 1e patroon. Neem 1x een getal uit het 1e patroon +1 en tel daarbij 9x het getal uit hetzelfde vakje vanuit het 2e patroon bij op.

 

 

 1x getal +1                                 9x getal                                       panmagisch 9x9 vierkant

0 1 2 3 4 5 6 7 8     8 5 2 7 4 1 6 3 0     73 47 21 67 41 15 61 35 9
3 4 5 6 7 8 0 1 2     6 3 0 8 5 2 7 4 1     58 32 6 79 53 27 64 38 12
6 7 8 0 1 2 3 4 5     7 4 1 6 3 0 8 5 2     70 44 18 55 29 3 76 50 24
1 2 0 4 5 3 7 8 6     2 8 5 1 7 4 0 6 3     20 75 46 14 69 40 8 63 34
4 5 3 7 8 6 1 2 0     0 6 3 2 8 5 1 7 4     5 60 31 26 81 52 11 66 37
7 8 6 1 2 0 4 5 3     1 7 4 0 6 3 2 8 5     17 72 43 2 57 28 23 78 49
2 0 1 5 3 4 8 6 7     5 2 8 4 1 7 3 0 6     48 19 74 42 13 68 36 7 62
5 3 4 8 6 7 2 0 1     3 0 6 5 2 8 4 1 7     33 4 59 54 25 80 39 10 65
8 6 7 2 0 1 5 3 4     4 1 7 3 0 6 5 2 8     45 16 71 30 1 56 51 22 77

 

 

Dit panmagisch 9x9 vierkant heeft als extra eigenschap dat het 3x3 compact is.


Deze methode werkt voor vierkanten, die de grootte (orde) van een oneven kwadraat hebben; zie methode uitgewerkt bij het 25x25 magisch vierkant.


Overigens levert bovenstaande methode niet veel oplossingsmogelijkheden op (er zijn maar zeer beperkt alternatieve getallencombinaties mogelijk).

 

 

Download
9x9, Shiftmethode 2.xls
Microsoft Excel werkblad 52.5 KB