Method of Strachey

 

Take a 9x9 magic square and construct the second, third and fourth 9x9 magic square by adding (9 x 9 =) 81, (2 x 81 = ) 162 respectively (3 x 81 = ) 243 to all numbers of the first 9x9 magic square. Put the first square in the top left corner, put the second square in the bottom right corner, put the third square in the top right corner and put the fourth square in the bottom left corner.

 

 

37 78 29 70 21 62 13 54 5 199 240 191 232 183 224 175 216 167
6 38 79 30 71 22 63 14 46 168 200 241 192 233 184 225 176 208
47 7 39 80 31 72 23 55 15 209 169 201 242 193 234 185 217 177
16 48 8 40 81 32 64 24 56 178 210 170 202 243 194 226 186 218
57 17 49 9 41 73 33 65 25 219 179 211 171 203 235 195 227 187
26 58 18 50 1 42 74 34 66 188 220 180 212 163 204 236 196 228
67 27 59 10 51 2 43 75 35 229 189 221 172 213 164 205 237 197
36 68 19 60 11 52 3 44 76 198 230 181 222 173 214 165 206 238
77 28 69 20 61 12 53 4 45 239 190 231 182 223 174 215 166 207
280 321 272 313 264 305 256 297 248 118 159 110 151 102 143 94 135 86
249 281 322 273 314 265 306 257 289 87 119 160 111 152 103 144 95 127
290 250 282 323 274 315 266 298 258 128 88 120 161 112 153 104 136 96
259 291 251 283 324 275 307 267 299 97 129 89 121 162 113 145 105 137
300 260 292 252 284 316 276 308 268 138 98 130 90 122 154 114 146 106
269 301 261 293 244 285 317 277 309 107 139 99 131 82 123 155 115 147
310 270 302 253 294 245 286 318 278 148 108 140 91 132 83 124 156 116
279 311 262 303 254 295 246 287 319 117 149 100 141 92 133 84 125 157
320 271 312 263 304 255 296 247 288 158 109 150 101 142 93 134 85 126

 

 

The columns and the diagonals give already the magic sum. To get the right sum in the rows, you must swap numbers, as follows. We split the 9x9 square in the top left corner and the 9x9 square in the bottom left corner in 'quarters' (marked by the blue numbers). The (yellow marked) ‘quarters’ top left and (red marked) 'quarters' bottom left of the 9x9 square in the top left corner must be swapped with the ‘quarters’ top left and bottom left of the 9x9 square in the bottom left corner. Also the (green marked) blue numbers on the border between the two 'quarters’ from the second cell up to the crossing point must be swapped. Finally the (pink marked) numbers of the top half of the last column(s) must be swapped with the numbers of the bottom half of the last column(s). Because the numbers of the first four columns must be swapped, the numbers of the last (4 – 1 = ) 3 columns must be swapped. See below the result.

 

 

18x18 magic square

280 321 272 313 21 62 13 54 5 199 240 191 232 183 224 94 135 86
249 281 322 273 71 22 63 14 46 168 200 241 192 233 184 144 95 127
290 250 282 323 31 72 23 55 15 209 169 201 242 193 234 104 136 96
259 291 251 283 81 32 64 24 56 178 210 170 202 243 194 145 105 137
57 260 292 252 284 73 33 65 25 219 179 211 171 203 235 114 146 106
269 301 261 293 1 42 74 34 66 188 220 180 212 163 204 155 115 147
310 270 302 253 51 2 43 75 35 229 189 221 172 213 164 124 156 116
279 311 262 303 11 52 3 44 76 198 230 181 222 173 214 84 125 157
320 271 312 263 61 12 53 4 45 239 190 231 182 223 174 134 85 126
37 78 29 70 264 305 256 297 248 118 159 110 151 102 143 175 216 167
6 38 79 30 314 265 306 257 289 87 119 160 111 152 103 225 176 208
47 7 39 80 274 315 266 298 258 128 88 120 161 112 153 185 217 177
16 48 8 40 324 275 307 267 299 97 129 89 121 162 113 226 186 218
300 17 49 9 41 316 276 308 268 138 98 130 90 122 154 195 227 187
26 58 18 50 244 285 317 277 309 107 139 99 131 82 123 236 196 228
67 27 59 10 294 245 286 318 278 148 108 140 91 132 83 205 237 197
36 68 19 60 254 295 246 287 319 117 149 100 141 92 133 165 206 238
77 28 69 20 304 255 296 247 288 158 109 150 101 142 93 215 166 207

 

 

ór

 

 

1x number from grid with 4x 9x9 magic square

1

68

54

6

70

47

8

66

49

1

68

54

6

70

47

8

66

49

44

21

58

37

23

63

42

25

56

44

21

58

37

23

63

42

25

56

78

34

11

80

30

13

73

32

18

78

34

11

80

30

13

73

32

18

46

5

72

51

7

65

53

3

67

46

5

72

51

7

65

53

3

67

62

39

22

55

41

27

60

43

20

62

39

22

55

41

27

60

43

20

15

79

29

17

75

31

10

77

36

15

79

29

17

75

31

10

77

36

64

50

9

69

52

2

71

48

4

64

50

9

69

52

2

71

48

4

26

57

40

19

59

45

24

61

38

26

57

40

19

59

45

24

61

38

33

16

74

35

12

76

28

14

81

33

16

74

35

12

76

28

14

81

1

68

54

6

70

47

8

66

49

1

68

54

6

70

47

8

66

49

44

21

58

37

23

63

42

25

56

44

21

58

37

23

63

42

25

56

78

34

11

80

30

13

73

32

18

78

34

11

80

30

13

73

32

18

46

5

72

51

7

65

53

3

67

46

5

72

51

7

65

53

3

67

62

39

22

55

41

27

60

43

20

62

39

22

55

41

27

60

43

20

15

79

29

17

75

31

10

77

36

15

79

29

17

75

31

10

77

36

64

50

9

69

52

2

71

48

4

64

50

9

69

52

2

71

48

4

26

57

40

19

59

45

24

61

38

26

57

40

19

59

45

24

61

38

33

16

74

35

12

76

28

14

81

33

16

74

35

12

76

28

14

81

 

 

+81x number from grid with numbers 0, 1, 2 and 3

0

0

0

0

0

3

3

3

3

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

3

3

3

3

0

0

0

0

2

2

2

2

2

2

1

1

1

0

0

0

0

0

3

3

3

3

2

2

2

2

2

2

1

1

1

3

3

3

3

3

0

0

0

0

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

0

0

0

0

3

3

3

3

1

1

1

1

1

1

2

2

2

3

3

3

3

3

0

0

0

0

1

1

1

1

1

1

2

2

2

 

 

= 18x18 magic square

1

68

54

6

70

290

251

309

292

163

230

216

168

232

209

89

147

130

44

264

301

280

266

63

42

25

56

206

183

220

199

185

225

123

106

137

78

277

254

323

273

13

73

32

18

240

196

173

242

192

175

154

113

99

46

248

315

294

250

65

53

3

67

208

167

234

213

169

227

134

84

148

62

282

265

298

284

27

60

43

20

224

201

184

217

203

189

141

124

101

15

322

272

260

318

31

10

77

36

177

241

191

179

237

193

91

158

117

64

293

252

312

295

2

71

48

4

226

212

171

231

214

164

152

129

85

26

300

283

262

302

45

24

61

38

188

219

202

181

221

207

105

142

119

33

16

74

35

12

319

271

257

324

195

178

236

197

174

238

109

95

162

244

311

297

249

313

47

8

66

49

82

149

135

87

151

128

170

228

211

287

21

58

37

23

306

285

268

299

125

102

139

118

104

144

204

187

218

321

34

11

80

30

256

316

275

261

159

115

92

161

111

94

235

194

180

289

5

72

51

7

308

296

246

310

127

86

153

132

88

146

215

165

229

305

39

22

55

41

270

303

286

263

143

120

103

136

122

108

222

205

182

258

79

29

17

75

274

253

320

279

96

160

110

98

156

112

172

239

198

307

50

9

69

52

245

314

291

247

145

131

90

150

133

83

233

210

166

269

57

40

19

59

288

267

304

281

107

138

121

100

140

126

186

223

200

276

259

317

278

255

76

28

14

81

114

97

155

116

93

157

190

176

243

 

 

Use the method of Strachey to construct magic squares of order is double odd. See 6x610x1014x1418x1822x2226x26 en 30x30

 

Download
18x18, Method of Strachey.xls
Microsoft Excel werkblad 71.0 KB