### Special 10x10 magic square

Order 10 is double prime number. So a panmagic, symmetric and/or compact result is not possible. Ofcourse there are concentric or inlay results.

See below an old 10x10 magic square mailed by Mahdi Alavi. If you split the numbers in the sequences 1 up to 10, 11 up to 20, ..., 91 up to 100, you find exactly one number from each sequence in each row/column/diagonal.

I have analyzed the 10x10 magic square and it is easy to find the (first) column grid. But it is very difficult to find a matching (second) row grid.

Special 10x10 magic square

 100 89 79 65 53 46 33 27 12 1 82 22 68 47 10 91 58 32 76 19 77 34 43 7 11 90 92 56 69 26 39 41 2 14 78 25 88 94 60 64 44 9 13 80 66 36 21 86 95 55 6 17 30 35 42 59 67 71 85 93 57 97 81 23 38 63 75 20 3 48 61 52 98 84 28 73 16 8 45 40 24 70 54 99 83 18 5 49 31 72 15 74 37 51 96 4 50 62 29 87

10 x (number-1) from column grid

 10 9 8 7 6 5 4 3 2 1 9 3 7 5 1 10 6 4 8 2 8 4 5 1 2 9 10 6 7 3 4 5 1 2 8 3 9 10 6 7 5 1 2 8 7 4 3 9 10 6 1 2 3 4 5 6 7 8 9 10 6 10 9 3 4 7 8 2 1 5 7 6 10 9 3 8 2 1 5 4 3 7 6 10 9 2 1 5 4 8 2 8 4 6 10 1 5 7 3 9

+1x number from matching row grid

 10 9 8 7 6 5 4 3 2 1 9 3 7 5 1 10 6 4 8 2 8 4 5 1 2 9 10 6 7 3 4 5 1 2 8 3 9 10 6 7 5 1 2 8 7 4 3 9 10 6 1 2 3 4 5 6 7 8 9 10 6 10 9 3 4 7 8 2 1 5 7 6 10 9 3 8 2 1 5 4 3 7 6 10 9 2 1 5 4 8 2 8 4 6 10 1 5 7 3 9

See in the download below the analysis of the special 10x10 magic square (and the special 14x14 magic square constructed by Jos Luyendijk).

10x10 & 14x14 magic square.xlsx