Use a 4x4 panmagic square to construct a Franklin panmagic 16x16x16 cube.
Take 1x number from first grid [level 1]
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
+ 16x number from second grid [level 1]
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
+ 64x number from third grid [level 1]
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
+ 256x number from fourth grid [level 1]
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
= Franklin panmagic 16x16x16 cube [level 1]
1 | 248 | 3901 | 4044 | 49 | 200 | 3853 | 4092 | 17 | 232 | 3885 | 4060 | 33 | 216 | 3869 | 4076 |
4095 | 3850 | 195 | 54 | 4047 | 3898 | 243 | 6 | 4079 | 3866 | 211 | 38 | 4063 | 3882 | 227 | 22 |
196 | 53 | 4096 | 3849 | 244 | 5 | 4048 | 3897 | 212 | 37 | 4080 | 3865 | 228 | 21 | 4064 | 3881 |
3902 | 4043 | 2 | 247 | 3854 | 4091 | 50 | 199 | 3886 | 4059 | 18 | 231 | 3870 | 4075 | 34 | 215 |
193 | 56 | 4093 | 3852 | 241 | 8 | 4045 | 3900 | 209 | 40 | 4077 | 3868 | 225 | 24 | 4061 | 3884 |
3903 | 4042 | 3 | 246 | 3855 | 4090 | 51 | 198 | 3887 | 4058 | 19 | 230 | 3871 | 4074 | 35 | 214 |
4 | 245 | 3904 | 4041 | 52 | 197 | 3856 | 4089 | 20 | 229 | 3888 | 4057 | 36 | 213 | 3872 | 4073 |
4094 | 3851 | 194 | 55 | 4046 | 3899 | 242 | 7 | 4078 | 3867 | 210 | 39 | 4062 | 3883 | 226 | 23 |
65 | 184 | 3965 | 3980 | 113 | 136 | 3917 | 4028 | 81 | 168 | 3949 | 3996 | 97 | 152 | 3933 | 4012 |
4031 | 3914 | 131 | 118 | 3983 | 3962 | 179 | 70 | 4015 | 3930 | 147 | 102 | 3999 | 3946 | 163 | 86 |
132 | 117 | 4032 | 3913 | 180 | 69 | 3984 | 3961 | 148 | 101 | 4016 | 3929 | 164 | 85 | 4000 | 3945 |
3966 | 3979 | 66 | 183 | 3918 | 4027 | 114 | 135 | 3950 | 3995 | 82 | 167 | 3934 | 4011 | 98 | 151 |
129 | 120 | 4029 | 3916 | 177 | 72 | 3981 | 3964 | 145 | 104 | 4013 | 3932 | 161 | 88 | 3997 | 3948 |
3967 | 3978 | 67 | 182 | 3919 | 4026 | 115 | 134 | 3951 | 3994 | 83 | 166 | 3935 | 4010 | 99 | 150 |
68 | 181 | 3968 | 3977 | 116 | 133 | 3920 | 4025 | 84 | 165 | 3952 | 3993 | 100 | 149 | 3936 | 4009 |
4030 | 3915 | 130 | 119 | 3982 | 3963 | 178 | 71 | 4014 | 3931 | 146 | 103 | 3998 | 3947 | 162 | 87 |
Each level consists of 16 proportional panmagic 4x4 squares. The cube is in each level panmagic and 2x2 compact and each 1/4 row/column/diagonal gives 1/4 of the magic sum. The cube is pandiagonal and pantriagonal magic through the levels and each 1/4 pillar gives 1/4 of the magic sum and each 1/2 tridiagonal gives 1/2 of the magic sum.
See all grids and all levels of the 16x16x16 magic cube in the downloads below.
With method composite 1 you use a magic square to construct a magic cube. See on this website the construction of:
3x3x3 (simple), 4x4x4 (most perfect), 5x5x5 (pantriagonal), 7x7x7 (pantriagonal),
9x9x9 (pandiagonal & compact), 12x12x12 (diagonal), 12x12x12 (pantriagonal),
15x15x15 (pandiagonal & compact), 16x16x16 (Nasik)a, 16x16x16 (Nasik)b,
20x20x20 (diagonal), 20x20x20 (pantriagonal), 24x24x24 (diagonal), 24x24x24
(pantriagonal), 28x28x28 (diagonal), 28x28x28 (pantriagonal)