Shift method

 

Use this method to construct magic squares of odd order which are no multiple of 3 (= 5x5, 7x7, 11x11, 13x13, 17x17, ... magic squares). To construct an 13x13 magic square, the first row is 0-a-b-c-d-e-f-g-h-i-j-k-l (fill in 1 up to 12 instead of a up to l; that gives 12x11x10x9x8x7x6x5x4x3x2 = 479.001.600 possibilities).

 

To construct row 2 up to 13 of the first grid shift the first row of the first grid each time two places to the left. To construct row 2 up to 13 of the second grid shift the first row of the second grid each time two places to the right.

 

 

Take 1x digit from first grid +1

0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1
4 5 6 7 8 9 10 11 12 0 1 2 3
6 7 8 9 10 11 12 0 1 2 3 4 5
8 9 10 11 12 0 1 2 3 4 5 6 7
10 11 12 0 1 2 3 4 5 6 7 8 9
12 0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12 0
3 4 5 6 7 8 9 10 11 12 0 1 2
5 6 7 8 9 10 11 12 0 1 2 3 4
7 8 9 10 11 12 0 1 2 3 4 5 6
9 10 11 12 0 1 2 3 4 5 6 7 8
11 12 0 1 2 3 4 5 6 7 8 9 10

 

 

+13x digit from second grid

0 1 2 3 4 5 6 7 8 9 10 11 12
11 12 0 1 2 3 4 5 6 7 8 9 10
9 10 11 12 0 1 2 3 4 5 6 7 8
7 8 9 10 11 12 0 1 2 3 4 5 6
5 6 7 8 9 10 11 12 0 1 2 3 4
3 4 5 6 7 8 9 10 11 12 0 1 2
1 2 3 4 5 6 7 8 9 10 11 12 0
12 0 1 2 3 4 5 6 7 8 9 10 11
10 11 12 0 1 2 3 4 5 6 7 8 9
8 9 10 11 12 0 1 2 3 4 5 6 7
6 7 8 9 10 11 12 0 1 2 3 4 5
4 5 6 7 8 9 10 11 12 0 1 2 3
2 3 4 5 6 7 8 9 10 11 12 0 1

 

 

= panmagic 13x13 square

1 15 29 43 57 71 85 99 113 127 141 155 169
146 160 5 19 33 47 61 75 89 103 117 118 132
122 136 150 164 9 23 37 51 65 66 80 94 108
98 112 126 140 154 168 13 14 28 42 56 70 84
74 88 102 116 130 131 145 159 4 18 32 46 60
50 64 78 79 93 107 121 135 149 163 8 22 36
26 27 41 55 69 83 97 111 125 139 153 167 12
158 3 17 31 45 59 73 87 101 115 129 143 144
134 148 162 7 21 35 49 63 77 91 92 106 120
110 124 138 152 166 11 25 39 40 54 68 82 96
86 100 114 128 142 156 157 2 16 30 44 58 72
62 76 90 104 105 119 133 147 161 6 20 34 48
38 52 53 67 81 95 109 123 137 151 165 10 24

 

 

It is possible to shift this 13x13 magic square on a 2x2 carpet of the 13x13 magic square and you get 168 more solutions .

 

Instead of shift 2 to the left and shift 2 to the right, you can also shift 3, 4, 5 or 6 to the right and/or to the left (e.g. in the first grid shift 4 to the right and in the second grid shift 2 to the left ór 2 to the right). In total you can construct all 3,48982 x 1021 panmagic 13x 13 squares.

 

 

Download
13x13, shift method.xls
Microsoft Excel werkblad 59.5 KB