Use the ultra magic 15x15 square and it's row grid to construct the eighth level of the pandiagonal & compact 15x15x15 cube. To construct the remaining levels we use the diagonal shifted versions of the ultra magic 15x15 square and the diagonal shifted versions of it's row grid (in reversed order):
Take 1x number from grid with [diagonal shifted] 15x15 ultra magic square [level 8]
202 | 10 | 124 | 200 | 14 | 127 | 205 | 4 | 125 | 209 | 7 | 130 | 199 | 5 | 134 |
75 | 183 | 83 | 73 | 181 | 90 | 63 | 188 | 88 | 61 | 195 | 78 | 68 | 193 | 76 |
47 | 116 | 177 | 51 | 114 | 167 | 56 | 117 | 171 | 54 | 107 | 176 | 57 | 111 | 174 |
142 | 40 | 154 | 140 | 44 | 157 | 145 | 34 | 155 | 149 | 37 | 160 | 139 | 35 | 164 |
105 | 213 | 23 | 103 | 211 | 30 | 93 | 218 | 28 | 91 | 225 | 18 | 98 | 223 | 16 |
197 | 11 | 132 | 201 | 9 | 122 | 206 | 12 | 126 | 204 | 2 | 131 | 207 | 6 | 129 |
67 | 190 | 79 | 65 | 194 | 82 | 70 | 184 | 80 | 74 | 187 | 85 | 64 | 185 | 89 |
60 | 108 | 173 | 58 | 106 | 180 | 48 | 113 | 178 | 46 | 120 | 168 | 53 | 118 | 166 |
137 | 41 | 162 | 141 | 39 | 152 | 146 | 42 | 156 | 144 | 32 | 161 | 147 | 36 | 159 |
97 | 220 | 19 | 95 | 224 | 22 | 100 | 214 | 20 | 104 | 217 | 25 | 94 | 215 | 29 |
210 | 3 | 128 | 208 | 1 | 135 | 198 | 8 | 133 | 196 | 15 | 123 | 203 | 13 | 121 |
62 | 191 | 87 | 66 | 189 | 77 | 71 | 192 | 81 | 69 | 182 | 86 | 72 | 186 | 84 |
52 | 115 | 169 | 50 | 119 | 172 | 55 | 109 | 170 | 59 | 112 | 175 | 49 | 110 | 179 |
150 | 33 | 158 | 148 | 31 | 165 | 138 | 38 | 163 | 136 | 45 | 153 | 143 | 43 | 151 |
92 | 221 | 27 | 96 | 219 | 17 | 101 | 222 | 21 | 99 | 212 | 26 | 102 | 216 | 24 |
+ 225x number from grid with row pattern 15x15 in reversed order [level 8]
13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 |
4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 |
3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 |
9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 |
6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 |
13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 |
4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 |
3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 |
9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 |
6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 |
13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 | 13 | 0 | 8 |
4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 | 4 | 12 | 5 |
3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 | 3 | 7 | 11 |
9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 | 9 | 2 | 10 |
6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 | 6 | 14 | 1 |
= 15x15x15 pandiagonal, 1/2 pantriagonal and compact magic cube [level 8]
3127 | 10 | 1924 | 3125 | 14 | 1927 | 3130 | 4 | 1925 | 3134 | 7 | 1930 | 3124 | 5 | 1934 |
975 | 2883 | 1208 | 973 | 2881 | 1215 | 963 | 2888 | 1213 | 961 | 2895 | 1203 | 968 | 2893 | 1201 |
722 | 1691 | 2652 | 726 | 1689 | 2642 | 731 | 1692 | 2646 | 729 | 1682 | 2651 | 732 | 1686 | 2649 |
2167 | 490 | 2404 | 2165 | 494 | 2407 | 2170 | 484 | 2405 | 2174 | 487 | 2410 | 2164 | 485 | 2414 |
1455 | 3363 | 248 | 1453 | 3361 | 255 | 1443 | 3368 | 253 | 1441 | 3375 | 243 | 1448 | 3373 | 241 |
3122 | 11 | 1932 | 3126 | 9 | 1922 | 3131 | 12 | 1926 | 3129 | 2 | 1931 | 3132 | 6 | 1929 |
967 | 2890 | 1204 | 965 | 2894 | 1207 | 970 | 2884 | 1205 | 974 | 2887 | 1210 | 964 | 2885 | 1214 |
735 | 1683 | 2648 | 733 | 1681 | 2655 | 723 | 1688 | 2653 | 721 | 1695 | 2643 | 728 | 1693 | 2641 |
2162 | 491 | 2412 | 2166 | 489 | 2402 | 2171 | 492 | 2406 | 2169 | 482 | 2411 | 2172 | 486 | 2409 |
1447 | 3370 | 244 | 1445 | 3374 | 247 | 1450 | 3364 | 245 | 1454 | 3367 | 250 | 1444 | 3365 | 254 |
3135 | 3 | 1928 | 3133 | 1 | 1935 | 3123 | 8 | 1933 | 3121 | 15 | 1923 | 3128 | 13 | 1921 |
962 | 2891 | 1212 | 966 | 2889 | 1202 | 971 | 2892 | 1206 | 969 | 2882 | 1211 | 972 | 2886 | 1209 |
727 | 1690 | 2644 | 725 | 1694 | 2647 | 730 | 1684 | 2645 | 734 | 1687 | 2650 | 724 | 1685 | 2654 |
2175 | 483 | 2408 | 2173 | 481 | 2415 | 2163 | 488 | 2413 | 2161 | 495 | 2403 | 2168 | 493 | 2401 |
1442 | 3371 | 252 | 1446 | 3369 | 242 | 1451 | 3372 | 246 | 1449 | 3362 | 251 | 1452 | 3366 | 249 |
See all grids and all levels of the 15x15x15 cube in the download below.
With method composite 1 you use a magic square to construct a magic cube. See on this website the construction of:
3x3x3 (simple), 4x4x4 (most perfect), 5x5x5 (pantriagonal), 7x7x7 (pantriagonal),
9x9x9 (pandiagonal & compact), 12x12x12 (diagonal), 12x12x12 (pantriagonal),
15x15x15 (pandiagonal & compact), 16x16x16 (Nasik)a, 16x16x16 (Nasik)b,
20x20x20 (diagonal), 20x20x20 (pantriagonal), 24x24x24 (diagonal), 24x24x24
(pantriagonal), 28x28x28 (diagonal), 28x28x28 (pantriagonal)