Sudoku method (1)

 

To find new construction methods you must analyze magic squares.

 

I have splitted a (most perfect) Franklin panmagic 32x32 square in grids with 4x4 Sudoku sub-squares.

 

 

32x32 (most perfect) Franklin panmagic square

15 1014 124 897 127 902 12 1009 31 998 108 913 111 918 28 993 47 982 92 929 95 934 44 977 63 966 76 945 79 950 60 961
1012 9 903 126 900 121 1015 14 996 25 919 110 916 105 999 30 980 41 935 94 932 89 983 46 964 57 951 78 948 73 967 62
901 128 1010 11 1013 16 898 123 917 112 994 27 997 32 914 107 933 96 978 43 981 48 930 91 949 80 962 59 965 64 946 75
122 899 13 1016 10 1011 125 904 106 915 29 1000 26 995 109 920 90 931 45 984 42 979 93 936 74 947 61 968 58 963 77 952
911 118 1020 1 1023 6 908 113 927 102 1004 17 1007 22 924 97 943 86 988 33 991 38 940 81 959 70 972 49 975 54 956 65
116 905 7 1022 4 1017 119 910 100 921 23 1006 20 1001 103 926 84 937 39 990 36 985 87 942 68 953 55 974 52 969 71 958
5 1024 114 907 117 912 2 1019 21 1008 98 923 101 928 18 1003 37 992 82 939 85 944 34 987 53 976 66 955 69 960 50 971
1018 3 909 120 906 115 1021 8 1002 19 925 104 922 99 1005 24 986 35 941 88 938 83 989 40 970 51 957 72 954 67 973 56
143 886 252 769 255 774 140 881 159 870 236 785 239 790 156 865 175 854 220 801 223 806 172 849 191 838 204 817 207 822 188 833
884 137 775 254 772 249 887 142 868 153 791 238 788 233 871 158 852 169 807 222 804 217 855 174 836 185 823 206 820 201 839 190
773 256 882 139 885 144 770 251 789 240 866 155 869 160 786 235 805 224 850 171 853 176 802 219 821 208 834 187 837 192 818 203
250 771 141 888 138 883 253 776 234 787 157 872 154 867 237 792 218 803 173 856 170 851 221 808 202 819 189 840 186 835 205 824
783 246 892 129 895 134 780 241 799 230 876 145 879 150 796 225 815 214 860 161 863 166 812 209 831 198 844 177 847 182 828 193
244 777 135 894 132 889 247 782 228 793 151 878 148 873 231 798 212 809 167 862 164 857 215 814 196 825 183 846 180 841 199 830
133 896 242 779 245 784 130 891 149 880 226 795 229 800 146 875 165 864 210 811 213 816 162 859 181 848 194 827 197 832 178 843
890 131 781 248 778 243 893 136 874 147 797 232 794 227 877 152 858 163 813 216 810 211 861 168 842 179 829 200 826 195 845 184
271 758 380 641 383 646 268 753 287 742 364 657 367 662 284 737 303 726 348 673 351 678 300 721 319 710 332 689 335 694 316 705
756 265 647 382 644 377 759 270 740 281 663 366 660 361 743 286 724 297 679 350 676 345 727 302 708 313 695 334 692 329 711 318
645 384 754 267 757 272 642 379 661 368 738 283 741 288 658 363 677 352 722 299 725 304 674 347 693 336 706 315 709 320 690 331
378 643 269 760 266 755 381 648 362 659 285 744 282 739 365 664 346 675 301 728 298 723 349 680 330 691 317 712 314 707 333 696
655 374 764 257 767 262 652 369 671 358 748 273 751 278 668 353 687 342 732 289 735 294 684 337 703 326 716 305 719 310 700 321
372 649 263 766 260 761 375 654 356 665 279 750 276 745 359 670 340 681 295 734 292 729 343 686 324 697 311 718 308 713 327 702
261 768 370 651 373 656 258 763 277 752 354 667 357 672 274 747 293 736 338 683 341 688 290 731 309 720 322 699 325 704 306 715
762 259 653 376 650 371 765 264 746 275 669 360 666 355 749 280 730 291 685 344 682 339 733 296 714 307 701 328 698 323 717 312
399 630 508 513 511 518 396 625 415 614 492 529 495 534 412 609 431 598 476 545 479 550 428 593 447 582 460 561 463 566 444 577
628 393 519 510 516 505 631 398 612 409 535 494 532 489 615 414 596 425 551 478 548 473 599 430 580 441 567 462 564 457 583 446
517 512 626 395 629 400 514 507 533 496 610 411 613 416 530 491 549 480 594 427 597 432 546 475 565 464 578 443 581 448 562 459
506 515 397 632 394 627 509 520 490 531 413 616 410 611 493 536 474 547 429 600 426 595 477 552 458 563 445 584 442 579 461 568
527 502 636 385 639 390 524 497 543 486 620 401 623 406 540 481 559 470 604 417 607 422 556 465 575 454 588 433 591 438 572 449
500 521 391 638 388 633 503 526 484 537 407 622 404 617 487 542 468 553 423 606 420 601 471 558 452 569 439 590 436 585 455 574
389 640 498 523 501 528 386 635 405 624 482 539 485 544 402 619 421 608 466 555 469 560 418 603 437 592 450 571 453 576 434 587
634 387 525 504 522 499 637 392 618 403 541 488 538 483 621 408 602 419 557 472 554 467 605 424 586 435 573 456 570 451 589 440

 

 

First grid (number +1)

2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3
2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0
3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2
1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3

 

 

Second grid (number x 4)

3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2
2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1
3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2
2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1
3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2
2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1
3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0 3 1 2 0
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
1 3 0