See how René Chrétien used the Medjig method 3D to produce a 22x22x22 pantriagonal magic cube.
Take 1x number from he first grid consisting of a 2x2x2 'blown up' 11x11x11 magic cube and add 11x11x11x number from the same cell of the second grid with 2x2x2 Medjig blocks to get a 22x22x22 pantriagonal magic cube.
1x number from first grid with 2x2x2 'blown up' 11x11x11 magic cube [level 1]
1 |
1 |
1330 |
1330 |
1196 |
1196 |
1062 |
1062 |
928 |
928 |
794 |
794 |
671 |
671 |
537 |
537 |
403 |
403 |
269 |
269 |
135 |
135 |
1 |
1 |
1330 |
1330 |
1196 |
1196 |
1062 |
1062 |
928 |
928 |
794 |
794 |
671 |
671 |
537 |
537 |
403 |
403 |
269 |
269 |
135 |
135 |
1138 |
1138 |
1004 |
1004 |
870 |
870 |
747 |
747 |
613 |
613 |
600 |
600 |
466 |
466 |
332 |
332 |
209 |
209 |
75 |
75 |
1272 |
1272 |
1138 |
1138 |
1004 |
1004 |
870 |
870 |
747 |
747 |
613 |
613 |
600 |
600 |
466 |
466 |
332 |
332 |
209 |
209 |
75 |
75 |
1272 |
1272 |
944 |
944 |
810 |
810 |
676 |
676 |
542 |
542 |
408 |
408 |
285 |
285 |
151 |
151 |
17 |
17 |
1214 |
1214 |
1201 |
1201 |
1078 |
1078 |
944 |
944 |
810 |
810 |
676 |
676 |
542 |
542 |
408 |
408 |
285 |
285 |
151 |
151 |
17 |
17 |
1214 |
1214 |
1201 |
1201 |
1078 |
1078 |
618 |
618 |
495 |
495 |
482 |
482 |
348 |
348 |
214 |
214 |
80 |
80 |
1277 |
1277 |
1154 |
1154 |
1020 |
1020 |
886 |
886 |
752 |
752 |
618 |
618 |
495 |
495 |
482 |
482 |
348 |
348 |
214 |
214 |
80 |
80 |
1277 |
1277 |
1154 |
1154 |
1020 |
1020 |
886 |
886 |
752 |
752 |
424 |
424 |
290 |
290 |
156 |
156 |
33 |
33 |
1230 |
1230 |
1096 |
1096 |
1083 |
1083 |
949 |
949 |
815 |
815 |
692 |
692 |
558 |
558 |
424 |
424 |
290 |
290 |
156 |
156 |
33 |
33 |
1230 |
1230 |
1096 |
1096 |
1083 |
1083 |
949 |
949 |
815 |
815 |
692 |
692 |
558 |
558 |
230 |
230 |
96 |
96 |
1293 |
1293 |
1159 |
1159 |
1025 |
1025 |
902 |
902 |
768 |
768 |
634 |
634 |
500 |
500 |
366 |
366 |
353 |
353 |
230 |
230 |
96 |
96 |
1293 |
1293 |
1159 |
1159 |
1025 |
1025 |
902 |
902 |
768 |
768 |
634 |
634 |
500 |
500 |
366 |
366 |
353 |
353 |
1235 |
1235 |
1101 |
1101 |
978 |
978 |
965 |
965 |
831 |
831 |
697 |
697 |
563 |
563 |
440 |
440 |
306 |
306 |
172 |
172 |
38 |
38 |
1235 |
1235 |
1101 |
1101 |
978 |
978 |
965 |
965 |
831 |
831 |
697 |
697 |
563 |
563 |
440 |
440 |
306 |
306 |
172 |
172 |
38 |
38 |
1041 |
1041 |
907 |
907 |
773 |
773 |
639 |
639 |
516 |
516 |
382 |
382 |
248 |
248 |
235 |
235 |
101 |
101 |
1309 |
1309 |
1175 |
1175 |
1041 |
1041 |
907 |
907 |
773 |
773 |
639 |
639 |
516 |
516 |
382 |
382 |
248 |
248 |
235 |
235 |
101 |
101 |
1309 |
1309 |
1175 |
1175 |
847 |
847 |
713 |
713 |
579 |
579 |
445 |
445 |
311 |
311 |
177 |
177 |
54 |
54 |
1251 |
1251 |
1117 |
1117 |
983 |
983 |
849 |
849 |
847 |
847 |
713 |
713 |
579 |
579 |
445 |
445 |
311 |
311 |
177 |
177 |
54 |
54 |
1251 |
1251 |
1117 |
1117 |
983 |
983 |
849 |
849 |
521 |
521 |
387 |
387 |
264 |
264 |
130 |
130 |
117 |
117 |
1314 |
1314 |
1180 |
1180 |
1046 |
1046 |
923 |
923 |
789 |
789 |
655 |
655 |
521 |
521 |
387 |
387 |
264 |
264 |
130 |
130 |
117 |
117 |
1314 |
1314 |
1180 |
1180 |
1046 |
1046 |
923 |
923 |
789 |
789 |
655 |
655 |
327 |
327 |
193 |
193 |
59 |
59 |
1256 |
1256 |
1133 |
1133 |
999 |
999 |
865 |
865 |
731 |
731 |
718 |
718 |
584 |
584 |
461 |
461 |
327 |
327 |
193 |
193 |
59 |
59 |
1256 |
1256 |
1133 |
1133 |
999 |
999 |
865 |
865 |
731 |
731 |
718 |
718 |
584 |
584 |
461 |
461 |
+11x11x11x number from second grid with 2x2x2 Medjig blocks [level 1]
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
5 |
6 |
0 |
5 |
0 |
5 |
3 |
5 |
0 |
5 |
6 |
3 |
6 |
0 |
3 |
0 |
6 |
5 |
5 |
0 |
3 |
6 |
0 |
3 |
6 |
3 |
6 |
3 |
6 |
0 |
3 |
6 |
5 |
0 |
3 |
5 |
5 |
6 |
3 |
0 |
3 |
6 |
0 |
5 |
= 22x22x22 pantriagonal magic cube [level 1]
3994 |
1 |
9316 |
7985 |
7851 |
1196 |
5055 |
9048 |
7583 |
8914 |
794 |
7449 |
671 |
7326 |
4530 |
7192 |
403 |
7058 |
8255 |
4262 |
8121 |
135 |
6656 |
7987 |
5323 |
1330 |
5189 |
9182 |
1062 |
7717 |
928 |
4921 |
8780 |
4787 |
8657 |
4664 |
8523 |
537 |
4396 |
8389 |
6924 |
269 |
4128 |
6790 |
5131 |
7793 |
1004 |
7659 |
8856 |
4863 |
8733 |
747 |
4606 |
613 |
8586 |
7255 |
7121 |
466 |
4325 |
8318 |
6864 |
8195 |
75 |
6730 |
1272 |
7927 |
9124 |
1138 |
4997 |
8990 |
7525 |
870 |
4740 |
7402 |
7268 |
8599 |
4593 |
600 |
4459 |
8452 |
332 |
6987 |
209 |
4202 |
8061 |
4068 |
9258 |
5265 |
4937 |
8930 |
7465 |
8796 |
676 |
7331 |
542 |
7197 |
4401 |
7063 |
285 |
6940 |
8137 |
4144 |
8003 |
17 |
5207 |
1214 |
9187 |
7856 |
7733 |
1078 |
944 |
7599 |
810 |
4803 |
8662 |
4669 |
8528 |
4535 |
8394 |
408 |
4278 |
8271 |
6806 |
151 |
4010 |
6672 |
7869 |
9200 |
5194 |
1201 |
5071 |
9064 |
8604 |
618 |
4488 |
495 |
8468 |
7137 |
7003 |
348 |
4207 |
8200 |
6735 |
8066 |
1277 |
7932 |
1154 |
7809 |
5013 |
7675 |
886 |
7541 |
8738 |
4745 |
4611 |
7273 |
7150 |
8481 |
4475 |
482 |
4341 |
8334 |
214 |
6869 |
80 |
4073 |
9263 |
5270 |
9140 |
5147 |
9006 |
1020 |
4879 |
8872 |
7407 |
752 |
424 |
7079 |
4283 |
6945 |
156 |
6811 |
8019 |
4026 |
9216 |
1230 |
5089 |
1096 |
9069 |
7738 |
7604 |
949 |
4808 |
8801 |
7347 |
8678 |
558 |
7213 |
8410 |
4417 |
8276 |
290 |
4149 |
8142 |
6688 |
33 |
5223 |
7885 |
7751 |
9082 |
5076 |
1083 |
4942 |
8935 |
815 |
7470 |
692 |
4685 |
8544 |
4551 |
6885 |
230 |
4089 |
8082 |