Basic key method (ultra magic)

 

How to construct as perfect as possible magic squares which are an odd multiple of 4?First we analyze how the basic key method works for the construction of the 16x16 magic square. Than we investigate the possibilities to use a basic key to construct a 12x12 magic square.

Why does the basic key of the 16x16 magic square work?

How is it possible that the basic key leads to most perfect (Franklin pan)magic squares for each order is a multiple of 8.

 

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16 = 136.

 

 

(1st) sum = sum = 34 = 1/4 x 136

 

 

1

2

16

15

16

15

1

2

  

 

So, in the 16x16 magic square each 1/4 row/column gives 1/4 of the magic sum.

 

(2nd) sum = sum = 34 = 1/4 x 136

  

 

1

2

16

15

16

15

1

2

 

 

So, in the 16x16 magic square each 1/4 diagonal gives 1/4 of the magic sum.

 

 

(3rd) Between opposite combinations must be an odd number of cells (opposite combinations must not be arranged next to each other).

 

  

1

2

16

15

16

15

1

2

 

 

So the first grid can be reflected to construct the second grid and if you combine the first grid  with the second grid you get all the numbers from 1 up to 256 in the magic square.

 

How to get the right basic key to construct a 12x12 magic square?

For magic squares which are an odd multiple of 4 no basic key exists to comply to all three above mentioned conditions. You have to make a choice.

 

 

[Option a]

 

(1st) sum = sum = 26 = 1/3 x 78

 

 

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

 

  

So each 1/3 row/column gives 1/3 of the magic sum (but 1/2 row/column gives not 1/2 of the magic sum).

 

 

(2nd) sum = sum = 39 = 1/2 x 78

  

 

1

10

11

4

8

6

12

3

2

9

5

7

 

 
So each 1/2 diagonal gives 1/2 of the magic sum (and each [[parallel] bended diagonal gives the magic sum = Franklin feauture). 


(3rd) Between each opposite combination is and odd number of cells, so the first grid can be reflected to construct the second grid and if you combine the first grid with the second grid you get all the numbers from 1 up to 144 in the magic square. 

 

1x number from first grid

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

1

10

11

4

8

6

5

7

12

3

2

9

12

3

2

9

5

7

8

6

1

10

11

4

 

 

+ 12 x (number -/- 1) from second grid

9

4

9

4

9

4

9

4

9

4

9

4

2

11

2

11

2

11

2

11

2

11

2

11

3

10

3

10

3

10

3

10

3

10

3

10

12

1

12

1

12

1

12

1

12

1

12

1

7

6

7

6

7

6

7

6

7

6

7

6

5

8

5

8

5

8

5

8

5

8

5

8

6

7

6

7

6

7

6

7

6

7

6

7

8

5

8

5

8

5

8

5

8

5

8

5

4

9

4

9

4

9

4

9

4

9

4

9

11

2

11

2

11

2

11

2

11

2

11

2

10

3

10

3

10

3

10

3

10

3

10

3

1

12

1

12

1

12

1

12

1

12

1

12

 

 

= 12x12 magic square (option a)

97

46

107

40

104

42

101

43

108

39

98

45

24

123

14

129

17

127

20

126

13

130

23

124

25

118

35

112

32

114

29

115

36

111

26

117

144

3

134

9

137

7

140

6

133

10

143

4

73

70

83

64

80

66

77

67

84

63

74

69

60

87

50

93

53

91

56

90

49

94

59

88

61

82

71

76

68

78

65

79

72

75

62

81

96

51

86

57

89

55

92

54

85

58

95

52

37

106

47

100

44

102

41

103

48

99

38

105

132

15

122

21

125

19

128

18

121

22

131

16

109

34

119

28

116

30

113

31

120

27

110

33

12

135

2

141

5

139

8

138

1

142

11

136

 

 

[option b]

 

(1st) sum = sum = 39 = 1/2 x 78

 

 

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

 

 

So each 1/2 row/column gives 1/2 of the magic sum.

 

 

(2nd) The sum of the half winding rows is not 39, but the sum of the whole winding rows is 78.

 

So each diagonal gives the magic sum (but each 1/2 diagonal gives not 1/2 of the magic sum and each [parallel] bended diagonals gives not the magic sum).

 

(3rd) Between each opposite combination is and odd number of cells, so the first grid can be reflected to construct the second grid and if you combine the first grid with the second grid you get all the numbers from 1 up to 144 in the magic square.

 

1x number from first grid

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

1

11

10

2

7

8

12

4

3

9

6

5

12

2

3

11

6

5

1

9

10

4

7

8

 

 

+ 12x (number -/- 1) from second grid

5

8

5

8

5

8

5

8

5

8

5

8

6

7

6

7

6

7

6

7

6

7

6

7

9

4

9

4

9

4

9

4

9

4

9

4

3

10

3

10

3

10

3

10

3

10

3

10

4

9

4

9

4

9

4

9

4

9

4

9

12

1

12

1

12

1

12

1

12

1

12

1

8

5

8

5

8

5

8

5

8

5

8

5

7

6

7

6

7

6

7

6

7

6

7

6

2

11

2

11

2

11

2

11

2

11

2

11

10

3

10

3

10

3

10

3

10

3

10

3

11

2

11

2

11

2

11

2

11

2

11

2

1

12

1

12

1

12

1

12

1

12

1

12

 

 

= 12x12 magic square (option b)

49

95

58

86

55

92

60

88

51

93

54

89

72

74

63

83

66

77

61

81

70

76

67

80

97

47

106

38

103

44

108

40

99

45

102

41

36

110

27

119

30

113

25

117

34

112

31

116

37

107

46

98

43

104

48

100

39

105

42

101

144

2

135

11

138

5

133

9

142

4

139

8

85

59

94

50

91

56

96

52

87

57

90

53

84

62

75

71

78

65

73

69

82

64

79

68

13

131

22

122

19

128

24

124

15

129

18

125

120

26

111

35

114

29

109

33

118

28

115

32

121

23

130

14

127

20

132

16

123

21

126

17

12

134

3

143

6

137

1

141

10

136

7

140

 

 

Ultra panmagic 12x12 square

It is also possible to construct an ultra panmagic 12x12 square in which each 4x4 sub-square has the following symmetric structure:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two numbers of the same colour sums to (the lowest + highest number of the magic 12x12 square = 1 + 144 =) 145.

 

 

1x number

 

 

 

 

 

 

 

 

 

12

2

2

12

5

6

6

5

10

4

4

10

1

11

11

1

8

7

7

8

3

9

9

3

12

2

2

12

5

6

6

5

10

4

4

10

1

11

11

1

8

7

7

8

3

9

9

3

12

2

2

12

5

6

6

5

10

4

4

10

1

11

11

1

8

7

7

8

3

9

9

3

12

2

2

12

5

6

6

5

10

4

4

10

1

11

11

1

8

7

7

8

3

9

9

3

12

2

2

12

5

6

6

5

10

4

4

10

1

11

11

1

8

7

7

8

3

9

9

3

12

2

2

12

5

6

6

5

10

4

4

10

1

11

11

1

8

7

7

8

3

9

9

3

 

 

+ 12 x (number -/- 1)

 

 

 

 

 

 

 

10

3

10

3

10

3

10

3

10

3

10

3

4

9

4

9

4

9

4

9

4

9

4

9

4

9

4

9

4

9

4

9

4

9

4

9

10

3

10

3

10

3

10

3

10

3

10

3

5

8

5

8

5

8

5

8

5

8

5

8

6

7

6

7

6

7

6

7

6

7

6

7

6

7

6

7

6

7

6

7

6

7

6

7

5

8

5

8

5

8

5

8

5

8

5

8

12

1

12

1

12

1

12

1

12

1

12

1

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

12

1

12

1

12

1

12

1

12

1

12

1

 


= ultra panmagic 12x12 square

 

 

 

 

120

26

110

36