John-R. Hendricks constructed in 2000 the first known bimagic cube (see website
http://www.multimagie.com/English/Cube.htm). I
have analyzed the bimagic 25x25x25 cube. It is possible to use Hendricks' method and to construct 15625 different bimagic 25x25x25 cubes. One result is
even symmetric.
The first grid is based on the following 5x5 square:
65 |
65 |
65 |
65 |
65 |
|||||
65 |
65 |
||||||||
55 |
1 |
6 |
11 |
16 |
21 |
||||
75 |
15 |
20 |
25 |
5 |
10 |
65 |
65 |
||
70 |
24 |
4 |
9 |
14 |
19 |
65 |
65 |
||
65 |
8 |
13 |
18 |
23 |
3 |
65 |
65 |
||
60 |
17 |
22 |
2 |
7 |
12 |
65 |
65 |
The 5x5
square vierkant is not fully magic, because not all rows give the magic sum of 65.
The first level of the first grid consists of the 25 shifted versions of the 5x5 squares on a 2x2 carpet. It has the
following row-column coordinates (e.g. square 5 - 3 has 2 in the top left corner):
1 - 1 5 - 3 4 - 5
3 - 2 2 - 4
2 - 5 1 - 2 5 - 4 4 - 1 3 - 3
3 - 4 2 -
1 1 - 3 5 - 5 4 - 2
4 - 3 3 - 5 2 - 2 1 - 4 5 - 1
5 - 2 4 - 4 3 - 1 2 - 3 1 - 5
Level 1 up to 25 of the first grid are the shifted versions of the first level with the following row/column-coordinates on a 2x2 carpet of the first
level:
1-1, 4-2, 2-3, 5-4, 3-5, 4-5, 2-1, 5-2, 3-3, 1-4, 2-4, 5-5, 3-1, 1-2, 4-3, 5-3, 3-4, 1-5, 4-1, 2-2, 3-2, 1-3, 4-4, 2-5 and 5-1.
The second grid is based on the diagonal shifted version of the 5x5 square which is used for the construction of the first grid:
5x5 square first grid -->
diagonal shift second grid
1 |
6 |
11 |
16 |
21 |
1 |
20 |
9 |
23 |
12 |
||
15 |
20 |
25 |
5 |
10 |
19 |
8 |
22 |
11 |
5 |
||
24 |
4 |
9 |
14 |
19 |
7 |
21 |
15 |
4 |
18 |
||
8 |
13 |
18 |
23 |
3 |
25 |
14 |
3 |
17 |
6 |
||
17 |
22 |
2 |
7 |
12 |
13 |
2 |
16 |
10 |
24 |
The 5x5 square of the second grid is a shifted version of a symmetric and panmagic (= ultra magic) 5x5 square! The first level of the second
grid consists of the 25 shifted versions of the 5x5 square on a 2x2 carpet. It has the following row-column coordinates (e.g. square 3 - 1 has 7
in the top left corner):
1 - 1 3 - 1 5 - 1 2 - 1 4 - 1
1 - 5 3 - 5 5 - 5 2 - 5 4 - 5
1 - 4 3 -
4 5 - 4 2 - 4 4 - 4
1 - 3 3 - 3 5 - 3 2 - 3 4 - 3
1 - 2 3 - 2 5 - 2 2 - 2 4 - 2
Level 1 up to 25 of the second grid are the shifted versions of the first level with
the following row/column-coordinates on a 2x2 carpet of the first level:
1-1, 3-2, 5-3, 2-4, 4-5, 4-3, 1-4, 3-5, 5-1, 2-2, 2-5, 4-1, 1-2, 3-3, 5-4, 5-2, 2-3, 4-4,
1-5, 3-1, 3-4, 5-5, 2-1, 4-2 en 1-3.
The third grid is based on the following 5x5 square:
15 |
40 |
65 |
90 |
115 |
|||||
55 |
65 |
||||||||
65 |
1 |
8 |
15 |
17 |
24 |
||||
65 |
4 |
6 |
13 |
20 |
22 |
65 |
65 |
||
65 |
2 |
9 |
11 |
18 |
25 |
65 |
75 |
||
65 |
5 |
7 |
14 |
16 |
23 |
65 |
60 |
||
65 |
3 |
10 |
12 |
19 |
21 |
65 |
70 |
The square vierkant is not fully
magic, not all rows and not all (pan)diagonals give the magic sum of 65.
The first level of the third grid consists of the 25 shifted versions of the 5x5 square on a 2x2 carpet. It has the
following row-column coordinates (e.g. square 4 - 2 has 7 in the top left corner):
1 - 1 4 - 2 2 - 3 5 - 4 3 - 5
4 - 4 2 -
5 5 - 1 3 - 2 1 - 3
2 - 2 5 - 3 3 - 4 1 - 5 4 - 1
5 - 5 3 - 1 1 - 2 4 - 3 2 - 4
3 - 3 1 - 4 4 - 5 2 - 1 5 - 2
Level 1 up to 25 of the third grid are the shifted versions of the first level with the following row/column-coordinates on a 2x2 carpet of the first level:
1-1, 1-3, 1-5, 1-2, 1-4, 2-4, 2-1, 2-3, 2-5, 2-2, 3-2, 3-4, 3-1, 3-3, 3-5, 4-5, 4-2, 4-4, 4-1, 4-3, 5-3, 5-5, 5-2, 5-4 and 5-1.
It is possible to use in each grid one of the 25 shifted versions of the 5x5 squares. So there are 25x25x25 is 15625 different
possibilities to construct a Hendricks' bimagic 25x25x25 cube. It is even possible to construct a symmetric version; see below the 13th (= middle) level:
13th (= middle) level of the symmetric version of Hendricks' bimagic 25x25x25 cube
6875 |
10955 |
15060 |
1040 |
5145 |
10021 |
14851 |
206 |
4936 |
9041 |
13922 |
3002 |
4107 |
8212 |
9817 |
2198 |
3153 |
7883 |
12113 |
13718 |
6099 |
7054 |
11784 |
12764 |
1369 |
8434 |
9414 |
14144 |
2749 |
4329 |
12335 |
13315 |
2420 |
3400 |
7605 |
13106 |
1586 |
5691 |
7296 |
11376 |
632 |
5487 |
6467 |
11197 |
15277 |
4533 |
9263 |
10368 |
14473 |
428 |
6893 |
11748 |
12703 |
1808 |
5913 |
10794 |
15524 |
979 |
5084 |
6689 |
14695 |
50 |
4755 |
8985 |
10590 |
2966 |
3946 |
8651 |
9631 |
13861 |
3742 |
7847 |
11927 |
13532 |
2012 |
9202 |
10182 |
14912 |
267 |
4497 |
9978 |
14083 |
2563 |
4168 |
8273 |
13129 |
2359 |
3339 |
8069 |
12174 |
1405 |
6135 |
7240 |
11345 |
12950 |
5301 |
6281 |
11011 |
15241 |
1221 |
7661 |
12391 |
13496 |
1951 |
3556 |
11562 |
12542 |
1647 |
5852 |
7457 |
15463 |
818 |
5548 |
6503 |
10733 |
614 |
4719 |
8824 |
10404 |
14509 |
3765 |
8620 |
9600 |
14305 |
2785 |
129 |
4984 |
9089 |
10069 |
14799 |
4030 |
8135 |
9865 |
13970 |
3075 |
7926 |
12031 |
13636 |
2241 |
3221 |
11827 |
12807 |
1287 |
6017 |
7122 |
15103 |
1083 |
5188 |
6793 |
10898 |
2463 |
3443 |
7548 |
12253 |
13358 |
5739 |
7344 |
11449 |
13029 |
1509 |
6390 |
11245 |
15350 |
680 |
5410 |
10286 |
14391 |
496 |
4576 |
9306 |
14187 |
2667 |
4272 |
8477 |
9457 |
922 |
5002 |
6732 |
10837 |
15567 |
4823 |
8903 |
10508 |
14738 |
93 |
8724 |
9679 |
13784 |
2889 |
3994 |
12000 |
13580 |
2060 |
3665 |
7770 |
12646 |
1851 |
5956 |
6936 |
11666 |
2606 |
4211 |
8316 |
9921 |
14001 |
3257 |
8112 |
12217 |
13197 |
2277 |
7158 |
11263 |
12993 |
1473 |
6178 |
11059 |
15164 |
1144 |
5374 |
6329 |
14960 |
315 |
4420 |
9150 |
10230 |
1695 |
5800 |
7380 |
11610 |
12590 |
5591 |
6571 |
10651 |
15381 |
861 |
8867 |
10472 |
14552 |
532 |
4637 |
9518 |
14373 |
2828 |
3808 |
8538 |
13419 |
1899 |
3604 |
7709 |
12439 |
9783 |
13888 |
3118 |
4098 |
8178 |
13684 |
2164 |
3144 |
7999 |
12079 |
1335 |
6065 |
7045 |
11775 |
12855 |
5231 |
6836 |
10941 |
15046 |
1001 |
9007 |
10112 |
14842 |
197 |
4902 |
11492 |
13097 |
1552 |
5657 |
7262 |
15268 |
748 |
5453 |
6433 |
11163 |
419 |
4524 |
9354 |
10334 |
14439 |
4320 |
8425 |
9380 |
14235 |
2715 |
7591 |
12321 |
13276 |
2381 |
3486 |
10551 |
14656 |
11 |
4866 |
8971 |
13827 |
2932 |
3912 |
8642 |
9747 |
2103 |
3708 |
7813 |
11918 |
13523 |
5879 |
6984 |
11714 |
12694 |
1799 |
6655 |
10760 |
15615 |
970 |
5075 |
12140 |
13245 |
2350 |
3305 |
8035 |
12911 |
1391 |
6246 |
7201 |
11306 |
1187 |
5292 |
6272 |
11102 |
15207 |
4463 |
9193 |
10173 |
14878 |
358 |
8364 |
9969 |
14074 |
2529 |
4134 |
10724 |
15429 |
784 |
5514 |
6619 |
14625 |
580 |
4685 |
8790 |
10395 |
2771 |
3851 |
8581 |
9561 |
14291 |
3547 |
7627 |
12482 |
13462 |
1942 |
7448 |
11528 |
12508 |
1738 |
5843 |
3187 |
7917 |
12022 |
13727 |
2207 |
7088 |
11818 |
12798 |
1253 |
6108 |
10989 |
15094 |
1074 |
5154 |
6759 |
14765 |
245 |
4975 |
9055 |
10035 |
3036 |
4016 |
8246 |
9826 |
13931 |
5396 |
6476 |
11206 |
15311 |
666 |
9297 |
10252 |
14482 |
462 |
4567 |
9448 |
14153 |
2633 |
4363 |
8468 |
13349 |
2429 |
3409 |
7514 |
12369 |
1625 |
5705 |
7310 |
11415 |
13020 |
3960 |
8690 |
9670 |
13775 |
2980 |
7856 |
11961 |
13566 |
2046 |
3626 |
11632 |
12737 |
1842 |
5947 |
6902 |
15533 |
888 |
5118 |
6723 |
10803 |
59 |
4789 |
8894 |
10624 |
14704 |
6169 |
7149 |
11354 |
12959 |
1439 |
6320 |
11050 |
15130 |
1235 |
5340 |
10216 |
14946 |
276 |
4381 |
9236 |
14117 |
2597 |
4177 |
8282 |
9887 |
2268 |
3373 |
8078 |
12183 |
13163 |
4728 |
8833 |
10438 |
14543 |
523 |
8504 |
9609 |
14339 |
2819 |
3799 |
12405 |
13385 |
1990 |
3595 |
7700 |
12551 |
1656 |
5761 |
7491 |
11596 |
827 |
5557 |
6537 |
10642 |
15497 |
12841 |
1321 |
6026 |
7006 |
11861 |
1117 |
5222 |
6802 |
10907 |
15012 |
4893 |
9123 |
10078 |
14808 |
163 |
8169 |
9774 |
13979 |
3084 |
4064 |
12070 |
13675 |
2130 |
3235 |
7965 |
14405 |
385 |
4615 |
9345 |
10325 |
2676 |
4281 |
8386 |
9491 |
14221 |
3452 |
7557 |
12287 |
13267 |
2497 |
7353 |
11458 |
13063 |
1543 |
5648 |
11129 |
15359 |
714 |
5444 |
6424 |
13614 |
2094 |
3699 |
7779 |
11884 |
1765 |
5995 |
6975 |
11680 |
12660 |
5036 |
6641 |
10871 |
15576 |
931 |
8937 |
10542 |
14647 |
102 |
4832 |
9713 |
13818 |
2923 |
3878 |
8733 |
15198 |
1153 |
5258 |
6363 |
11093 |
349 |
4429 |
9159 |
10139 |
14994 |
4250 |
8330 |
9935 |
14040 |
2520 |
8021 |
12226 |
13206 |
2311 |
3291 |
11297 |
12877 |
1482 |
6212 |
7192 |
14257 |
2862 |
3842 |
8572 |
9527 |
1908 |
3513 |
7743 |
12473 |
13428 |
5809 |
7414 |
11519 |
12624 |
1704 |
6585 |
10690 |
15420 |
775 |
5605 |
10481 |
14586 |
566 |
4671 |
8751 |
See all grids and all levels of the
25x25x25 bimagic cube in the download below: