A Nasik 4x4x4x4 cube does not exist. There are 4x4x4x4 magic cubes with different magic features; see on website
http://homepage2.nifty.com/googol/magcube/en/tesser.htm
On the above mentioned website you can find a pantriagonal & panquadragonal 4x4x4x4
cube, which is 2x2(x2x2) compact. In my opinion this is the most perfect 4x4x4x4 cube.
It is easy to construct this 4x4x4x4 magic cube. In both grids you must choose one of the 4x4
panmagic squares.
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
1 |
8 |
13 |
12 |
34 |
16 |
9 |
4 |
5 |
34 |
1 |
8 |
13 |
12 |
34 |
16 |
9 |
4 |
5 |
34 |
34 |
34 |
34 |
|||||||||
34 |
15 |
10 |
3 |
6 |
34 |
2 |
7 |
14 |
11 |
34 |
15 |
10 |
3 |
6 |
34 |
2 |
7 |
14 |
11 |
34 |
34 |
34 |
34 |
|||||||||
34 |
4 |
5 |
16 |
9 |
34 |
13 |
12 |
1 |
8 |
34 |
4 |
5 |
16 |
9 |
34 |
13 |
12 |
1 |
8 |
34 |
34 |
34 |
34 |
|||||||||
34 |
14 |
11 |
2 |
7 |
34 |
3 |
6 |
15 |
10 |
34 |
14 |
11 |
2 |
7 |
34 |
3 |
6 |
15 |
10 |
34 |
34 |
34 |
34 |
|||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
16 |
9 |
4 |
5 |
34 |
1 |
8 |
13 |
12 |
34 |
16 |
9 |
4 |
5 |
34 |
1 |
8 |
13 |
12 |
34 |
34 |
34 |
34 |
|||||||||
34 |
2 |
7 |
14 |
11 |
34 |
15 |
10 |
3 |
6 |
34 |
2 |
7 |
14 |
11 |
34 |
15 |
10 |
3 |
6 |
34 |
34 |
34 |
34 |
|||||||||
34 |
13 |
12 |
1 |
8 |
34 |
4 |
5 |
16 |
9 |
34 |
13 |
12 |
1 |
8 |
34 |
4 |
5 |
16 |
9 |
34 |
34 |
34 |
34 |
|||||||||
34 |
3 |
6 |
15 |
10 |
34 |
14 |
11 |
2 |
7 |
34 |
3 |
6 |
15 |
10 |
34 |
14 |
11 |
2 |
7 |
34 |
34 |
34 |
34 |
|||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
1 |
8 |
13 |
12 |
34 |
16 |
9 |
4 |
5 |
34 |
1 |
8 |
13 |
12 |
34 |
16 |
9 |
4 |
5 |
34 |
34 |
34 |
34 |
|||||||||
34 |
15 |
10 |
3 |
6 |
34 |
2 |
7 |
14 |
11 |
34 |
15 |
10 |
3 |
6 |
34 |
2 |
7 |
14 |
11 |
34 |
34 |
34 |
34 |
|||||||||
34 |
4 |
5 |
16 |
9 |
34 |
13 |
12 |
1 |
8 |
34 |
4 |
5 |
16 |
9 |
34 |
13 |
12 |
1 |
8 |
34 |
34 |
34 |
34 |
|||||||||
34 |
14 |
11 |
2 |
7 |
34 |
3 |
6 |
15 |
10 |
34 |
14 |
11 |
2 |
7 |
34 |
3 |
6 |
15 |
10 |
34 |
34 |
34 |
34 |
|||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
16 |
9 |
4 |
5 |
34 |
1 |
8 |
13 |
12 |
34 |
16 |
9 |
4 |
5 |
34 |
1 |
8 |
13 |
12 |
34 |
34 |
34 |
34 |
|||||||||
34 |
2 |
7 |
14 |
11 |
34 |
15 |
10 |
3 |
6 |
34 |
2 |
7 |
14 |
11 |
34 |
15 |
10 |
3 |
6 |
34 |
34 |
34 |
34 |
|||||||||
34 |
13 |
12 |
1 |
8 |
34 |
4 |
5 |
16 |
9 |
34 |
13 |
12 |
1 |
8 |
34 |
4 |
5 |
16 |
9 |
34 |
34 |
34 |
34 |
|||||||||
34 |
3 |
6 |
15 |
10 |
34 |
14 |
11 |
2 |
7 |
34 |
3 |
6 |
15 |
10 |
34 |
14 |
11 |
2 |
7 |
34 |
34 |
34 |
34 |
|||||||||
34 |
34 |
34 |
34 |
|||||||||||||||||||||||||||||
34 |
34 |
34 |
34 |
|||||||||||||||||||||||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
Second grid of the 4x4x4x4 pantriagonal &
panquadragonal cube
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
1 |
16 |
1 |
16 |
34 |
8 |
9 |
8 |
9 |
34 |
13 |
4 |
13 |
4 |
34 |
12 |
5 |
12 |
5 |
34 |
34 |
34 |
34 |
|||||||||
34 |
16 |
1 |
16 |
1 |
34 |
9 |
8 |
9 |
8 |
34 |
4 |
13 |
4 |
13 |
34 |
5 |
12 |
5 |
12 |
34 |
34 |
34 |
34 |
|||||||||
34 |
1 |
16 |
1 |
16 |
34 |
8 |
9 |
8 |
9 |
34 |
13 |
4 |
13 |
4 |
34 |
12 |
5 |
12 |
5 |
34 |
34 |
34 |
34 |
|||||||||
34 |
16 |
1 |
16 |
1 |
34 |
9 |
8 |
9 |
8 |
34 |
4 |
13 |
4 |
13 |
34 |
5 |
12 |
5 |
12 |
34 |
34 |
34 |
34 |
|||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
15 |
2 |
15 |
2 |
34 |
10 |
7 |
10 |
7 |
34 |
3 |
14 |
3 |
14 |
34 |
6 |
11 |
6 |
11 |
34 |
34 |
34 |
34 |
|||||||||
34 |
2 |
15 |
2 |
15 |
34 |
7 |
10 |
7 |
10 |
34 |
14 |
3 |
14 |
3 |
34 |
11 |
6 |
11 |
6 |
34 |
34 |
34 |
34 |
|||||||||
34 |
15 |
2 |
15 |
2 |
34 |
10 |
7 |
10 |
7 |
34 |
3 |
14 |
3 |
14 |
34 |
6 |
11 |
6 |
11 |
34 |
34 |
34 |
34 |
|||||||||
34 |
2 |
15 |
2 |
15 |
34 |
7 |
10 |
7 |
10 |
34 |
14 |
3 |
14 |
3 |
34 |
11 |
6 |
11 |
6 |
34 |
34 |
34 |
34 |
|||||||||
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
34 |
|||||||||||||||||
34 |
|