Use the famous Khajuraho 4x4 panmagic square to construct larger magic squares which are a multiple of 4 (= 8x8, 12x12, 16x16, 20x20, … magic square).
Rewrite the Khajuraho magic square as follows:
Khajuraho magic square Basic magic square
7 |
12 |
1 |
14 |
7 |
h-4 |
1 |
h-2 |
||
2 |
13 |
8 |
11 |
2 |
h-3 |
8 |
h-5 |
||
16 |
3 |
10 |
5 |
h |
3 |
h-6 |
5 |
||
9 |
6 |
15 |
4 |
h-7 |
6 |
h-1 |
4 |
To construct an 16x16 panmagic square, you need the basic square and 15 extending magic squares:
7
|
h-4 | 1 | h-2 | 8 | -8 | 8 | -8 | 16 | -16 | 16 | -16 | 24 | -24 | 24 | -24 |
2 | h-3 | 8 | h-5 | 8 | -8 | 8 | -8 | 16 | -16 | 16 | -16 | 24 | -24 | 24 | -24 |
h | 3 | h-6 | 5 | -8 | 8 | -8 | 8 | -16 | 16 | -16 | 16 | -24 | 24 | -24 | 24 |
h-7 | 6 | h-1 | 4 | -8 | 8 | -8 | 8 | -16 | 16 | -16 | 16 | -24 | 24 | -24 | 24 |
32 | -32 | 32 | -32 | 40 | -40 | 40 | -40 | 48 | -48 | 48 | -48 | 56 | -56 | 56 | -56 |
32 | -32 | 32 | -32 | 40 | -40 | 40 | -40 | 48 | -48 | 48 | -48 | 56 | -56 | 56 | -56 |
-32 | 32 | -32 | 32 | -40 | 40 | -40 | 40 | -48 | 48 | -48 | 48 | -56 | 56 | -56 | 56 |
-32 | 32 | -32 | 32 | -40 | 40 | -40 | 40 | -48 | 48 | -48 | 48 | -56 | 56 | -56 | 56 |
64 | -64 | 64 | -64 | 72 | -72 | 72 | -72 | 80 | -80 | 80 | -80 | 88 | -88 | 88 | -88 |
64 | -64 | 64 | -64 | 72 | -72 | 72 | -72 | 80 | -80 | 80 | -80 | 88 | -88 | 88 | -88 |
-64 | 64 | -64 | 64 | -72 | 72 | -72 | 72 | -80 | 80 | -80 | 80 | -88 | 88 | -88 | 88 |
-64 | 64 | -64 | 64 | -72 | 72 | -72 | 72 | -80 | 80 | -80 | 80 | -88 | 88 | -88 | 88 |
96 | -96 | 96 | -96 | 104 | -104 | 104 | -104 | 112 | -112 | 112 | -112 | 120 | -120 | 120 | -120 |
96 | -96 | 96 | -96 | 104 | -104 | 104 | -104 | 112 | -112 | 112 | -112 | 120 | -120 | 120 | -120 |
-96 | 96 | -96 | 96 | -104 | 104 | -104 | 104 | -112 | 112 | -112 | 112 | -120 | 120 | -120 | 120 |
-96 | 96 | -96 | 96 | -104 | 104 | -104 | 104 | -112 | 112 | -112 | 112 | -120 | 120 | -120 | 120 |
The highest number in the 16x16 square is 256. Fill in 256 for h and calculate all the numbers. You get the following 16x16 panmagic square.
Panmagic 16x16 square
7 | 252 | 1 | 254 | 15 | 244 | 9 | 246 | 23 | 236 | 17 | 238 | 31 | 228 | 25 | 230 |
2 | 253 | 8 | 251 | 10 | 245 | 16 | 243 | 18 | 237 | 24 | 235 | 26 | 229 | 32 | 227 |
256 | 3 | 250 | 5 | 248 | 11 | 242 | 13 | 240 | 19 | 234 | 21 | 232 | 27 | 226 | 29 |
249 | 6 | 255 | 4 | 241 | 14 | 247 | 12 | 233 | 22 | 239 | 20 | 225 | 30 | 231 | 28 |
39 | 220 | 33 | 222 | 47 | 212 | 41 | 214 | 55 | 204 | 49 | 206 | 63 | 196 | 57 | 198 |
34 | 221 | 40 | 219 | 42 | 213 | 48 | 211 | 50 | 205 | 56 | 203 | 58 | 197 | 64 | 195 |
224 | 35 | 218 | 37 | 216 | 43 | 210 | 45 | 208 | 51 | 202 | 53 | 200 | 59 | 194 | 61 |
217 | 38 | 223 | 36 | 209 | 46 | 215 | 44 | 201 | 54 | 207 | 52 | 193 | 62 | 199 | 60 |
71 | 188 | 65 | 190 | 79 | 180 | 73 | 182 | 87 | 172 | 81 | 174 | 95 | 164 | 89 | 166 |
66 | 189 | 72 | 187 | 74 | 181 | 80 | 179 | 82 | 173 | 88 | 171 | 90 | 165 | 96 | 163 |
192 | 67 | 186 | 69 | 184 | 75 | 178 | 77 | 176 | 83 | 170 | 85 | 168 | 91 | 162 | 93 |
185 | 70 | 191 | 68 | 177 | 78 | 183 | 76 | 169 | 86 | 175 | 84 | 161 | 94 | 167 | 92 |
103 | 156 | 97 | 158 | 111 | 148 | 105 | 150 | 119 | 140 | 113 | 142 | 127 | 132 | 121 | 134 |
98 | 157 | 104 | 155 | 106 | 149 | 112 | 147 | 114 | 141 | 120 | 139 | 122 | 133 | 128 | 131 |
160 | 99 | 154 | 101 | 152 | 107 | 146 | 109 | 144 | 115 | 138 | 117 | 136 | 123 | 130 | 125 |
153 | 102 | 159 | 100 | 145 | 110 | 151 | 108 | 137 | 118 | 143 | 116 | 129 | 126 | 135 | 124 |
This magic square is almost Franklin panmagic. Only not all 2x2 sub-squares give 1/4 of the magic sum (1/4 x 2056 = 514). If you swap the colours you get the following most perfect (Franklin pan)magic 16x16 square:
Most perfect (Franklin pan)magic 16x16 square
31 | 252 | 1 | 230 | 23 | 244 | 9 | 238 | 15 | 236 | 17 | 246 | 7 | 228 | 25 | 254 |
2 | 229 | 32 | 251 | 10 | 237 | 24 | 243 | 18 | 245 | 16 | 235 | 26 | 253 | 8 | 227 |
256 | 27 | 226 | 5 | 248 | 19 | 234 | 13 | 240 | 11 | 242 | 21 | 232 | 3 | 250 | 29 |
225 | 6 | 255 | 28 | 233 | 14 | 247 | 20 | 241 | 22 | 239 | 12 | 249 | 30 | 231 | 4 |
63 | 220 | 33 | 198 | 55 | 212 | 41 | 206 | 47 | 204 | 49 | 214 | 39 | 196 | 57 | 222 |
34 | 197 | 64 | 219 | 42 | 205 | 56 | 211 | 50 | 213 | 48 | 203 | 58 | 221 | 40 | 195 |
224 | 59 | 194 | 37 | 216 | 51 | 202 | 45 | 208 | 43 | 210 | 53 | 200 | 35 | 218 | 61 |
193 | 38 | 223 | 60 | 201 | 46 | 215 | 52 | 209 | 54 | 207 | 44 | 217 | 62 | 199 | 36 |
95 | 188 | 65 | 166 | 87 | 180 | 73 | 174 | 79 | 172 | 81 | 182 | 71 | 164 | 89 | 190 |
66 | 165 | 96 | 187 | 74 | 173 | 88 | 179 | 82 | 181 | 80 | 171 | 90 | 189 | 72 | 163 |
192 | 91 | 162 | 69 | 184 | 83 | 170 | 77 | 176 | 75 | 178 | 85 | 168 | 67 | 186 | 93 |
161 | 70 | 191 | 92 | 169 | 78 | 183 | 84 | 177 | 86 | 175 | 76 | 185 | 94 | 167 | 68 |
127 | 156 | 97 | 134 | 119 | 148 | 105 | 142 | 111 | 140 | 113 | 150 | 103 | 132 | 121 | 158 |
98 | 133 | 128 | 155 | 106 | 141 | 120 | 147 | 114 | 149 | 112 | 139 | 122 | 157 | 104 | 131 |
160 | 123 | 130 | 101 | 152 | 115 | 138 | 109 | 144 | 107 | 146 | 117 | 136 | 99 | 154 | 125 |
129 | 102 | 159 | 124 | 137 | 110 | 151 | 116 | 145 | 118 | 143 | 108 | 153 | 126 | 135 | 100 |
Use the Khajuraho method to construct magic squares of order is multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32
It is possible to use each 4x4 panmagic square to construct a 16x16 Franklin panmagic square.
See above how to construct the almost perfect 16x16 Franklin panmagic square (replace the numbers 9 up to 16 of the 4x4 panmagic square by 249 up to 256 to create the first 4x4 sub-square and add each time 8 to the eight low numbers and -/- 8 to the eight high numbers to create the 15 other 4x4 sub-squares).
You must swap half of the numbers to get a perfect 16x16 Franklin panmagic square. Which numbers you must swap and how to swap the numbers, depends on the place of the 1 and the 8 in the 4x4 panmagic square.
1 | 2 | 3 | 4 |
5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 |
Holger Danielsson showed me how to swap numbers in the 16x16, 24x24, 32x32, ... square (see also on his website https://www.magicsquares.info/construction/pandiagonal
5.html).
If the 1 and the 8 are in the same column, than you must swap half of the numbers of sub-square 1/5/9/13 with 4/8/12/16 and 2/6/10/14 with 3/7/11/15 (= horizontally).
If the 1 and the 8 are in the same row, than you must swap half of the numbers of sub-square 1/2/3/4 with 13/14/15/16 and 5/6/7/8 with 9/10/11/12 (= vertically).
Correction sheet 1
Correction sheet 2
If the 1 and the 8 are in position 1 & 2 or 3 & 4 of the row/column, than you must use correction sheet 1.
If the 1 and the 8 are in position 2 & 3 or 1 & 4 of the row/column, than you must use correction sheet 2.