Â
It is possible to reconstruct a 7x7x7 (pan)diagonal magic cube, using the numbers 1 up to 448 in stead of 1 up to 7 in the third grid, and getting a 28x28x28 diagonal magic cube.
Â
N.B.: Dividing the magic sum of the 28x28x28 magic cube by 4 you get 1571.5, so it is not possible to get 64 proportional 7x7x7 diagonal magic cubes. In stead we use 4 different magic sums (1567, 1568, 1575 and 1576).
Â
Â
1 | 128 | 129 | 256 | 257 | 348 | 448 | Â | 1567 |
2 | 127 | 130 | 255 | 258 | 349 | 447 | Â | 1568 |
3 | 126 | 131 | 254 | 259 | 350 | 444 | Â | 1567 |
4 | 125 | 132 | 253 | 260 | 352 | 442 | Â | 1568 |
5 | 124 | 133 | 252 | 261 | 351 | 441 | Â | 1567 |
6 | 123 | 134 | 251 | 262 | 346 | 446 | Â | 1568 |
7 | 122 | 135 | 250 | 263 | 345 | 445 | Â | 1567 |
8 | 121 | 136 | 249 | 264 | 347 | 443 | Â | 1568 |
9 | 120 | 137 | 248 | 265 | 356 | 440 | Â | 1575 |
10 | 119 | 138 | 247 | 266 | 357 | 439 | Â | 1576 |
11 | 118 | 139 | 246 | 267 | 358 | 436 | Â | 1575 |
12 | 117 | 140 | 245 | 268 | 360 | 434 | Â | 1576 |
13 | 116 | 141 | 244 | 269 | 359 | 433 | Â | 1575 |
14 | 115 | 142 | 243 | 270 | 354 | 438 | Â | 1576 |
15 | 114 | 143 | 242 | 271 | 353 | 437 | Â | 1575 |
16 | 113 | 144 | 241 | 272 | 355 | 435 | Â | 1576 |
17 | 112 | 145 | 240 | 273 | 364 | 416 | Â | 1567 |
18 | 111 | 146 | 239 | 274 | 365 | 415 | Â | 1568 |
19 | 110 | 147 | 238 | 275 | 366 | 412 | Â | 1567 |
20 | 109 | 148 | 237 | 276 | 368 | 410 | Â | 1568 |
21 | 108 | 149 | 236 | 277 | 367 | 409 | Â | 1567 |
22 | 107 | 150 | 235 | 278 | 362 | 414 | Â | 1568 |
23 | 106 | 151 | 234 | 279 | 361 | 413 | Â | 1567 |
24 | 105 | 152 | 233 | 280 | 363 | 411 | Â | 1568 |
25 | 104 | 153 | 232 | 281 | 380 | 400 | Â | 1575 |
26 | 103 | 154 | 231 | 282 | 381 | 399 | Â | 1576 |
27 | 102 | 155 | 230 | 283 | 382 | 396 | Â | 1575 |
28 | 101 | 156 | 229 | 284 | 384 | 394 | Â | 1576 |
29 | 100 | 157 | 228 | 285 | 383 | 393 | Â | 1575 |
30 | 99 | 158 | 227 | 286 | 378 | 398 | Â | 1576 |
31 | 98 | 159 | 226 | 287 | 377 | 397 | Â | 1575 |
32 | 97 | 160 | 225 | 288 | 379 | 395 | Â | 1576 |
33 | 96 | 161 | 224 | 289 | 372 | 392 | Â | 1567 |
34 | 95 | 162 | 223 | 290 | 373 | 391 | Â | 1568 |
35 | 94 | 163 | 222 | 291 | 374 | 388 | Â | 1567 |
36 | 93 | 164 | 221 | 292 | 376 | 386 | Â | 1568 |
37 | 92 | 165 | 220 | 293 | 375 | 385 | Â | 1567 |
38 | 91 | 166 | 219 | 294 | 370 | 390 | Â | 1568 |
39 | 90 | 167 | 218 | 295 | 369 | 389 | Â | 1567 |
40 | 89 | 168 | 217 | 296 | 371 | 387 | Â | 1568 |
41 | 88 | 169 | 216 | 297 | 332 | 432 | Â | 1575 |
42 | 87 | 170 | 215 | 298 | 333 | 431 | Â | 1576 |
43 | 86 | 171 | 214 | 299 | 334 | 428 | Â | 1575 |
44 | 85 | 172 | 213 | 300 | 336 | 426 | Â | 1576 |
45 | 84 | 173 | 212 | 301 | 335 | 425 | Â | 1575 |
46 | 83 | 174 | 211 | 302 | 330 | 430 | Â | 1576 |
47 | 82 | 175 | 210 | 303 | 329 | 429 | Â | 1575 |
48 | 81 | 176 | 209 | 304 | 331 | 427 | Â | 1576 |
49 | 80 | 177 | 208 | 305 | 324 | 424 | Â | 1567 |
50 | 79 | 178 | 207 | 306 | 325 | 423 | Â | 1568 |
51 | 78 | 179 | 206 | 307 | 326 | 420 | Â | 1567 |
52 | 77 | 180 | 205 | 308 | 328 | 418 | Â | 1568 |
53 | 76 | 181 | 204 | 309 | 327 | 417 | Â | 1567 |
54 | 75 | 182 | 203 | 310 | 322 | 422 | Â | 1568 |
55 | 74 | 183 | 202 | 311 | 321 | 421 | Â | 1567 |
56 | 73 | 184 | 201 | 312 | 323 | 419 | Â | 1568 |
57 | 72 | 185 | 200 | 313 | 340 | 408 | Â | 1575 |
58 | 71 | 186 | 199 | 314 | 341 | 407 | Â | 1576 |
59 | 70 | 187 | 198 | 315 | 342 | 404 | Â | 1575 |
60 | 69 | 188 | 197 | 316 | 344 | 402 | Â | 1576 |
61 | 68 | 189 | 196 | 317 | 343 | 401 | Â | 1575 |
62 | 67 | 190 | 195 | 318 | 338 | 406 | Â | 1576 |
63 | 66 | 191 | 194 | 319 | 337 | 405 | Â | 1575 |
64 | 65 | 192 | 193 | 320 | 339 | 403 | Â | 1576 |
Â
Â
We put the 7x7x7 diagonal magic cubes in the following sequence (so we get the right magic sum in the rows/columns/diagonals in the levels and the pillar/diagonals through the levels):
Â
Â
1568 | 1567 | 1576 | 1575 |
1567 | 1575 | 1568 | 1576 |
1576 | 1568 | 1575 | 1567 |
1575 | 1576 | 1567 | 1568 |
 |  |  |  |
 |  |  |  |
1567 | 1575 | 1568 | 1576 |
1575 | 1576 | 1567 | 1568 |
1568 | 1567 | 1576 | 1575 |
1576 | 1568 | 1575 | 1567 |
 |  |  |  |
 |  |  |  |
1576 | 1568 | 1575 | 1567 |
1568 | 1567 | 1576 | 1575 |
1575 | 1576 | 1567 | 1568 |
1567 | 1575 | 1568 | 1576 |
 |  |  |  |
 |  |  |  |
1575 | 1576 | 1567 | 1568 |
1576 | 1568 | 1575 | 1567 |
1567 | 1575 | 1568 | 1576 |
1568 | 1567 | 1576 | 1575 |
Â
Â
See below the grids and result of level 1.
Â
Â
Take 1x number from first grid +1Â [level 1]
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
Â
Â
+7x number from second grid [level 1]
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
Â
Â
+ 49x (number -/- 1) from third grid [level 1]
4 | 125 | 132 | 253 | 260 | 352 | 442 | 3 | 126 | 131 | 254 | 259 | 350 | 444 | 10 | 119 | 138 | 247 | 266 | 357 | 439 | 337 | 405 | 63 | 66 | 191 | 194 | 319 |
253 | 260 | 352 | 442 | 4 | 125 | 132 | 254 | 259 | 350 | 444 | 3 | 126 | 131 | 247 | 266 | 357 | 439 | 10 | 119 | 138 | 66 | 191 | 194 | 319 | 337 | 405 | 63 |
442 | 4 | 125 | 132 | 253 | 260 | 352 | 444 | 3 | 126 | 131 | 254 | 259 | 350 | 439 | 10 | 119 | 138 | 247 | 266 | 357 | 319 | 337 | 405 | 63 | 66 | 191 | 194 |
132 | 253 | 260 | 352 | 442 | 4 | 125 | 131 | 254 | 259 | 350 | 444 | 3 | 126 | 138 | 247 | 266 | 357 | 439 | 10 | 119 | 63 | 66 | 191 | 194 | 319 | 337 | 405 |
352 | 442 | 4 | 125 | 132 | 253 | 260 | 350 | 444 | 3 | 126 | 131 | 254 | 259 | 357 | 439 | 10 | 119 | 138 | 247 | 266 | 194 | 319 | 337 | 405 | 63 | 66 | 191 |
125 | 132 | 253 | 260 | 352 | 442 | 4 | 126 | 131 | 254 | 259 | 350 | 444 | 3 | 119 | 138 | 247 | 266 | 357 | 439 | 10 | 405 | 63 | 66 | 191 | 194 | 319 | 337 |
260 | 352 | 442 | 4 | 125 | 132 | 253 | 259 | 350 | 444 | 3 | 126 | 131 | 254 | 266 | 357 | 439 | 10 | 119 | 138 | 247 | 191 | 194 | 319 | 337 | 405 | 63 | 66 |
5 | 124 | 133 | 252 | 261 | 351 | 441 | 9 | 120 | 137 | 248 | 265 | 356 | 440 | 6 | 123 | 134 | 251 | 262 | 346 | 446 | 12 | 117 | 140 | 245 | 268 | 360 | 434 |
252 | 261 | 351 | 441 | 5 | 124 | 133 | 248 | 265 | 356 | 440 | 9 | 120 | 137 | 251 | 262 | 346 | 446 | 6 | 123 | 134 | 245 | 268 | 360 | 434 | 12 | 117 | 140 |
441 | 5 | 124 | 133 | 252 | 261 | 351 | 440 | 9 | 120 | 137 | 248 | 265 | 356 | 446 | 6 | 123 | 134 | 251 | 262 | 346 | 434 | 12 | 117 | 140 | 245 | 268 | 360 |
133 | 252 | 261 | 351 | 441 | 5 | 124 | 137 | 248 | 265 | 356 | 440 | 9 | 120 | 134 | 251 | 262 | 346 | 446 | 6 | 123 | 140 | 245 | 268 | 360 | 434 | 12 | 117 |
351 | 441 | 5 | 124 | 133 | 252 | 261 | 356 | 440 | 9 | 120 | 137 | 248 | 265 | 346 | 446 | 6 | 123 | 134 | 251 | 262 | 360 | 434 | 12 | 117 | 140 | 245 | 268 |
124 | 133 | 252 | 261 | 351 | 441 | 5 | 120 | 137 | 248 | 265 | 356 | 440 | 9 | 123 | 134 | 251 |