### Lozenge method of John Horton Conway

With the Lozenge method of John Horton Conway you get a magic square of odd order and you find all odd numbers in the (white) 'diamond' and all even numbers outside the diamond (in the dark area). See for detailed explanation: Lozenge 5x5 magic square.

Take 1x number from row grid +1

 5 6 7 8 9 10 0 1 2 3 4 4 5 6 7 8 9 10 0 1 2 3 3 4 5 6 7 8 9 10 0 1 2 2 3 4 5 6 7 8 9 10 0 1 1 2 3 4 5 6 7 8 9 10 0 0 1 2 3 4 5 6 7 8 9 10 10 0 1 2 3 4 5 6 7 8 9 9 10 0 1 2 3 4 5 6 7 8 8 9 10 0 1 2 3 4 5 6 7 7 8 9 10 0 1 2 3 4 5 6 6 7 8 9 10 0 1 2 3 4 5

+ 11x number from column grid

 6 7 8 9 10 0 1 2 3 4 5 7 8 9 10 0 1 2 3 4 5 6 8 9 10 0 1 2 3 4 5 6 7 9 10 0 1 2 3 4 5 6 7 8 10 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4 5 6 7 8 9 10 0 1 3 4 5 6 7 8 9 10 0 1 2 4 5 6 7 8 9 10 0 1 2 3 5 6 7 8 9 10 0 1 2 3 4

= 11x11 Lozenge magic square

 72 84 96 108 120 11 12 24 36 48 60 82 94 106 118 9 21 33 34 46 58 70 92 104 116 7 19 31 43 55 56 68 80 102 114 5 17 29 41 53 65 77 78 90 112 3 15 27 39 51 63 75 87 99 100 1 13 25 37 49 61 73 85 97 109 121 22 23 35 47 59 71 83 95 107 119 10 32 44 45 57 69 81 93 105 117 8 20 42 54 66 67 79 91 103 115 6 18 30 52 64 76 88 89 101 113 4 16 28 40 62 74 86 98 110 111 2 14 26 38 50

Use this method to construct magic squares of odd order (= 3x3, 5x5, 7x7, ... magic square).

See 3x35x57x79x911x1113x1315x1517x1719x1921x2123x2325x2527x27,   29x29 and 31x31

11x11, Lozenge method.xls