### Reflecting grids (1)

Construct a 10x10 magic square with a row grid and a column grid, which is a reflection of the row grid.

1x number from row grid +1

 0 9 9 9 9 0 0 9 0 0 1 1 8 8 8 8 8 1 1 1 7 7 2 7 2 2 7 2 7 2 6 6 6 3 3 3 3 3 6 6 5 5 5 5 4 4 4 4 4 5 4 4 4 4 5 5 5 5 5 4 3 3 3 6 6 6 6 6 3 3 2 2 7 2 7 7 2 7 2 7 8 8 1 1 1 1 1 8 8 8 9 0 0 0 0 9 9 0 9 9

+10x number from column grid

 0 1 7 6 5 4 3 2 8 9 9 1 7 6 5 4 3 2 8 0 9 8 2 6 5 4 3 7 1 0 9 8 7 3 5 4 6 2 1 0 9 8 2 3 4 5 6 7 1 0 0 8 2 3 4 5 6 7 1 9 0 8 7 3 4 5 6 2 1 9 9 1 2 3 4 5 6 7 8 0 0 1 7 6 4 5 3 2 8 9 0 1 2 6 5 4 3 7 8 9

= 10x10 magic square

 1 20 80 70 60 41 31 30 81 91 92 12 79 69 59 49 39 22 82 2 98 88 23 68 53 43 38 73 18 3 97 87 77 34 54 44 64 24 17 7 96 86 26 36 45 55 65 75 15 6 5 85 25 35 46 56 66 76 16 95 4 84 74 37 47 57 67 27 14 94 93 13 28 33 48 58 63 78 83 8 9 19 72 62 42 52 32 29 89 99 10 11 21 61 51 50 40 71 90 100

Take care that all the numbers from 1 up to 100 are in the magic square.

Use the method of reflecting grids (1) to construct magic squares of order is double odd. See 6x610x1014x1418x1822x2226x26 en 30x30

10x10, reflection.xls