### Sudoku method (2)

Construct a most perfect magic 12x12 square by using a grid with 3x3 the same 4x4 Sudoku and a fixed grid:

Take 1x number from first grid + 1

 2 1 3 0 2 1 3 0 2 1 3 0 3 0 2 1 3 0 2 1 3 0 2 1 0 3 1 2 0 3 1 2 0 3 1 2 1 2 0 3 1 2 0 3 1 2 0 3 2 1 3 0 2 1 3 0 2 1 3 0 3 0 2 1 3 0 2 1 3 0 2 1 0 3 1 2 0 3 1 2 0 3 1 2 1 2 0 3 1 2 0 3 1 2 0 3 2 1 3 0 2 1 3 0 2 1 3 0 3 0 2 1 3 0 2 1 3 0 2 1 0 3 1 2 0 3 1 2 0 3 1 2 1 2 0 3 1 2 0 3 1 2 0 3

+4x number from second grid

 35 5 30 0 34 4 31 1 33 3 32 2 0 30 5 35 1 31 4 34 2 32 3 33 5 35 0 30 4 34 1 31 3 33 2 32 30 0 35 5 31 1 34 4 32 2 33 3 29 11 24 6 28 10 25 7 27 9 26 8 6 24 11 29 7 25 10 28 8 26 9 27 11 29 6 24 10 28 7 25 9 27 8 26 24 6 29 11 25 7 28 10 26 8 27 9 23 17 18 12 22 16 19 13 21 15 20 14 12 18 17 23 13 19 16 22 14 20 15 21 17 23 12 18 16 22 13 19 15 21 14 20 18 12 23 17 19 13 22 16 20 14 21 15

= Most perfect (Franklin pan)magic 12x12 square

 143 22 124 1 139 18 128 5 135 14 132 9 4 121 23 142 8 125 19 138 12 129 15 134 21 144 2 123 17 140 6 127 13 136 10 131 122 3 141 24 126 7 137 20 130 11 133 16 119 46 100 25 115 42 104 29 111 38 108 33 28 97 47 118 32 101 43 114 36 105 39 110 45 120 26 99 41 116 30 103 37 112 34 107 98 27 117 48 102 31 113 44 106 35 109 40 95 70 76 49 91 66 80 53 87 62 84 57 52 73 71 94 56 77 67 90 60 81 63 86 69 96 50 75 65 92 54 79 61 88 58 83 74 51 93 72 78 55 89 68 82 59 85 64

This magic 12x12 square is panmagic, 2x2 compact and each 1/3 row/column/diagonal gives 1/3 of the magic sum.

Use this method to construct most perfect (Franklin pan)magic squares which are a multiple of 4 from 8x8 to infinite. See

12x12, Sudoku method (2).xls