### Reflecting grids (2)

Use the method of Gronogo (source: http://www.grogono.com/magic/6x6.php) to construct a 10x10 magic square

Take 1x number

 17 17 24 24 1 1 8 8 15 15 17 17 24 24 1 1 8 8 15 15 23 23 5 5 7 7 14 14 16 16 23 23 5 5 7 7 14 14 16 16 4 4 6 6 13 13 20 20 22 22 4 4 6 6 13 13 20 20 22 22 10 10 12 12 19 19 21 21 3 3 10 10 12 12 19 19 21 21 3 3 11 11 18 18 25 25 2 2 9 9 11 11 18 18 25 25 2 2 9 9

+25x number

 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

+50x number

 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1

= 10x10 magic square

 17 92 74 99 51 76 8 33 15 40 67 42 49 24 26 1 83 58 90 65 73 98 5 30 57 82 14 39 66 41 23 48 55 80 7 32 64 89 16 91 79 54 31 6 88 63 45 20 97 22 29 4 81 56 38 13 95 70 47 72 85 60 12 37 69 94 21 46 53 28 35 10 62 87 19 44 71 96 3 78 86 61 43 18 100 75 27 2 84 9 11 36 93 68 50 25 77 52 34 59

Use the method of reflecting grids (2) to construct magic squares of order is double odd. See 6x610x1014x1418x1822x2226x26 en 30x30

10x10, reflection (2).xlsx