Use 2x2 the same 4x4 panmagic square and 2x2 a 4x4 Sudoku grid (the original 4x4 Sudoku grid and the 3 versions of the 4x4 sudoku grid in which the quarters are vertically, horizontally respectively diagonally swapped).
Take 1x number
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
+ 4x number
0 | 1 | 2 | 3 | 2 | 3 | 0 | 1 |
3 | 2 | 1 | 0 | 1 | 0 | 3 | 2 |
1 | 0 | 3 | 2 | 3 | 2 | 1 | 0 |
2 | 3 | 0 | 1 | 0 | 1 | 2 | 3 |
1 | 0 | 3 | 2 | 3 | 2 | 1 | 0 |
2 | 3 | 0 | 1 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 2 | 3 | 0 | 1 |
3 | 2 | 1 | 0 | 1 | 0 | 3 | 2 |
= 8x8 Franklin panmagic square
1 | 24 | 45 | 60 | 33 | 56 | 13 | 28 |
63 | 42 | 19 | 6 | 31 | 10 | 51 | 38 |
20 | 5 | 64 | 41 | 52 | 37 | 32 | 9 |
46 | 59 | 2 | 23 | 14 | 27 | 34 | 55 |
17 | 8 | 61 | 44 | 49 | 40 | 29 | 12 |
47 | 58 | 3 | 22 | 15 | 26 | 35 | 54 |
4 | 21 | 48 | 57 | 36 | 53 | 16 | 25 |
62 | 43 | 18 | 7 | 30 | 11 | 50 | 39 |
The 4x4 Sudoku grid is a duplicater. In total there are 32 different duplicaters:
1 | 0 | 3 | 1 | 2 | 2 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 4 | 2 | 0 | 3 | 1 | ||||||||||
3 | 0 | 2 | 1 | 0 | 2 | 1 | 3 | 2 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | ||||||||||||||
2 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | 3 | 0 | 2 | 1 | 0 | 2 | 1 | 3 | ||||||||||||||
1 | 2 | 0 | 3 | 2 | 0 | 3 | 1 | 0 | 3 | 1 | 2 | 3 | 1 | 2 | 0 | ||||||||||||||
5 | 3 | 0 | 2 | 1 | 6 | 0 | 2 | 1 | 3 | 7 | 2 | 1 | 3 | 0 | 8 | 1 | 3 | 0 | 2 | ||||||||||
2 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | 3 | 0 | 2 | 1 | 0 | 2 | 1 | 3 | ||||||||||||||
1 | 2 | 0 | 3 | 2 | 0 | 3 | 1 | 0 | 3 | 1 | 2 | 3 | 1 | 2 | 0 | ||||||||||||||
0 | 3 | 1 | 2 | 3 | 1 | 2 | 0 | 1 | 2 | 0 | 3 | 2 | 0 | 3 | 1 | ||||||||||||||
9 | 2 | 1 | 3 | 0 | 10 | 1 | 3 | 0 | 2 | 11 | 3 | 0 | 2 | 1 | 12 | 0 | 2 | 1 | 3 | ||||||||||
1 | 2 | 0 | 3 | 2 | 0 | 3 | 1 | 0 | 3 | 1 | 2 | 3 | 1 | 2 | 0 | ||||||||||||||
0 | 3 | 1 | 2 | 3 | 1 | 2 | 0 | 1 | 2 | 0 | 3 | 2 | 0 | 3 | 1 | ||||||||||||||
3 | 0 | 2 | 1 | 0 | 2 | 1 | 3 | 2 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | ||||||||||||||
13 | 1 | 2 | 0 | 3 | 14 | 2 | 0 | 3 | 1 | 15 | 0 | 3 | 1 | 2 | 16 | 3 | 1 | 2 | 0 | ||||||||||
0 | 3 | 1 | 2 | 3 | 1 | 2 | 0 | 1 | 2 | 0 | 3 | 2 | 0 | 3 | 1 | ||||||||||||||
3 | 0 | 2 | 1 | 0 | 2 | 1 | 3 | 2 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | ||||||||||||||
2 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | 3 | 0 | 2 | 1 | 0 | 2 | 1 | 3 | ||||||||||||||
17 | 2 | 1 | 0 | 3 | 18 | 1 | 0 | 3 | 2 | 19 | 0 | 3 | 2 | 1 | 20 | 3 | 2 | 1 | 0 | ||||||||||
0 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | 2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | ||||||||||||||
3 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | ||||||||||||||
1 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | 3 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | ||||||||||||||
21 | 0 | 3 | 2 | 1 | 22 | 3 | 2 | 1 | 0 | 23 | 2 | 1 | 0 | 3 | 24 | 1 | 0 | 3 | 2 | ||||||||||
3 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | ||||||||||||||
1 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | 3 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | ||||||||||||||
2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | 0 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | ||||||||||||||
25 | 3 | 0 | 1 | 2 | 26 | 0 | 1 | 2 | 3 | 27 | 1 | 2 | 3 | 0 | 28 | 2 | 3 | 0 | 1 | ||||||||||
1 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | 3 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | ||||||||||||||
2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | 0 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | ||||||||||||||
0 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | 2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | ||||||||||||||
29 | 1 | 2 | 3 | 0 | 30 | 2 | 3 | 0 | 1 | 31 | 3 | 0 | 1 | 2 | 32 | 0 | 1 | 2 | 3 | ||||||||||
2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | 0 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | ||||||||||||||
0 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | 2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | ||||||||||||||
3 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 0 | 2 | 3 | 0 | 1 |
It is possible to duplicate the 8x8 magic square again and again to a 16x16, 32x32, 64x64, 128x128, ... magic square.