### 6 groups of Franklin panmagic 8x8 squares

Introduction

Excluding rotating and/or mirroring there are 368.640 Franklin panmagic 8x8 squares. In each of the Franklin panmagic 8x8 squares you can find the panmagic 4x4 square. You can distinguish 6 different groups.

Group I [4x the same panmagic 4x4 square = Sudoku method 3]

Franklin panmagic 8x8 square           4x same 4x4 panmagic square           Sudoku grid

 63 17 40 10 47 1 56 26 15 1 8 10 15 1 8 10 3 1 2 0 2 0 3 1 6 44 29 51 22 60 13 35 6 12 13 3 6 12 13 3 0 2 1 3 1 3 0 2 25 55 2 48 9 39 18 64 9 7 2 16 9 7 2 16 1 3 0 2 0 2 1 3 36 14 59 21 52 30 43 5 4 14 11 5 4 14 11 5 2 0 3 1 3 1 2 0 31 49 8 42 15 33 24 58 15 1 8 10 15 1 8 10 1 3 0 2 0 2 1 3 38 12 61 19 54 28 45 3 6 12 13 3 6 12 13 3 2 0 3 1 3 1 2 0 57 23 34 16 41 7 50 32 9 7 2 16 9 7 2 16 3 1 2 0 2 0 3 1 4 46 27 53 20 62 11 37 4 14 11 5 4 14 11 5 0 2 1 3 1 3 0 2

Groep II [2x2 the same panmagic 4x4 square]

Franklin panmagic 8x8 square           2x2 same 4x4 panmagic square         Sudoku grid

 63 33 24 10 31 1 56 42 15 1 8 10 15 1 8 10 3 2 1 0 1 0 3 2 6 28 45 51 38 60 13 19 6 12 13 3 6 12 13 3 0 1 2 3 2 3 0 1 41 55 2 32 9 23 34 64 9 7 2 16 9 7 2 16 2 3 0 1 0 1 2 3 20 14 59 37 52 46 27 5 4 14 11 5 4 14 11 5 1 0 3 2 3 2 1 0 43 53 4 30 11 21 36 62 11 5 4 14 11 5 4 14 2 3 0 1 0 1 2 3 18 16 57 39 50 48 25 7 2 16 9 7 2 16 9 7 1 0 3 2 3 2 1 0 61 35 22 12 29 3 54 44 13 3 6 12 13 3 6 12 3 2 1 0 1 0 3 2 8 26 47 49 40 58 15 17 8 10 15 1 8 10 15 1 0 1 2 3 2 3 0 1

Groep III [4x different panmagic 4x4 square]

Franklin panmagic 8x8 square         4 different 4x4 panmagic squares       Sudoku grid

 63 33 28 6 64 34 27 5 15 1 12 6 16 2 11 5 3 2 1 0 3 2 1 0 26 8 61 35 25 7 62 36 10 8 13 3 9 7 14 4 1 0 3 2 1 0 3 2 37 59 2 32 38 60 1 31 5 11 2 16 6 12 1 15 2 3 0 1 2 3 0 1 4 30 39 57 3 29 40 58 4 14 7 9 3 13 8 10 0 1 2 3 0 1 2 3 55 41 20 14 56 42 19 13 7 9 4 14 8 10 3 13 3 2 1 0 3 2 1 0 18 16 53 43 17 15 54 44 2 16 5 11 1 15 6 12 1 0 3 2 1 0 3 2 45 51 10 24 46 52 9 23 13 3 10 8 14 4 9 7 2 3 0 1 2 3 0 1 12 22 47 49 11 21 48 50 12 6 15 1 11 5 16 2 0 1 2 3 0 1 2 3

Groep IV [1x splitted panmagic 4x4 square = Basis pattern method (1)]

Franklin panmagic 8x8 square           1x splitted panmagic 4x4 square       Sudoku grid

 63 3 54 10 61 1 56 12 15 3 6 10 13 1 8 12 3 0 3 0 3 0 3 0 50 14 59 7 52 16 57 5 2 14 11 7 4 16 9 5 3 0 3 0 3 0 3 0 11 55 2 62 9 53 4 64 11 7 2 14 9 5 4 16 0 3 0 3 0 3 0 3 6 58 15 51 8 60 13 49 6 10 15 3 8 12 13 1 0 3 0 3 0 3 0 3 31 35 22 42 29 33 24 44 15 3 6 10 13 12 8 1 1 2 1 2 1 2 1 2 18 46 27 39 20 48 25 37 2 14 11 7 4 5 9 16 1 2 1 2 1 2 1 2 43 23 34 30 41 21 36 32 11 7 2 14 9 16 4 5 2 1 2 1 2 1 2 1 38 26 47 19 40 28 45 17 6 10 15 3 8 1 13 12 2 1 2 1 2 1 2 1

Sudoku grid can also be:

Franklin panmagic 8x8 square           1x splitted 4x4 panmagic square       Sudoku grid

 63 8 58 1 59 4 62 5 15 8 10 1 11 4 14 5 3 0 3 0 3 0 3 0 18 41 23 48 22 45 19 44 2 9 7 16 6 13 3 12 1 2 1 2 1 2 1 2 7 64 2 57 3 60 6 61 7 16 2 9 3 12 6 13 0 3 0 3 0 3 0 3 42 17 47 24 46 21 43 20 10 1 15 8 14 5 11 4 2 1 2 1 2 1 2 1 15 56 10 49 11 52 14 53 15 8 10 1 11 4 14 5 0 3 0 3 0 3 0 3 34 25 39 32 38 29 35 28 2 9 7 16 6 13 3 12 2 1 2 1 2 1 2 1 55 16 50 9 51 12 54 13 7 16 2 9 3 12 6 13 3 0 3 0 3 0 3 0 26 33 31 40 30 37 27 36 10 1 15 8 14 5 11 4 1 2 1 2 1 2 1 2

Groep V [2x splitted panmagic 4x4 square]

Franklin panmagic 8x8 square           2x splitted 4x4 panmagic square       Sudoku grid

 63 8 25 34 59 4 29 38 15 8 9 2 11 4 13 6 3 0 1 2 3 0 1 2 26 33 64 7 30 37 60 3 10 1