3x3 in 5x5 & concentrisch magisch vierkant

 

Zie op de voorgaande webpagina het 3x3 in 5x5 (inleg)magisch vierkant, dat echter geen concentrisch magisch vierkant is.

 

In een concentrisch 5x5 magisch vierkant moeten de middelste 9 getallen van het 5x5 vierkant in het 3x3 vierkant worden geplaatst en in de rand moeten de 8 laagste en 8 hoogste getallen van het 5x5 vierkant tegenover elkaar geplaatst worden.

 

 

Getal + 8           =       maak rand      =  3x3 in 5x5 magisch vierkant

                    22 18 3 2 20
2 9 4     10 17 12     7 10 17 12 19
7 5 3     15 13 11     5 15 13 11 21
6 1 8     14 9 16     25 14 9 16 1
                    6 8 23 24 4

 

 

Harry White (zie website http://budshaw.ca/BorderedMagicSquares.html) leert ons hoe je de rand moet maken.

 

De rand bestaat uit 4 zijden van 5 getallen, waarbij de 4 hoekpunten dubbel voorkomen. Het hoogste getal ligt altijd tegenover de laagste, de op-een-na hoogste t.o.v. de op-een-na-laagste, ... (1+25 = 2+24 = 3+23 = 4+22 = 5+21 = 6+20 = 7+19 = 8+18). Je hoeft maar twee van de vier zijden uit te puzzelen. In de rand zitten de 8 laagste en de 8 hoogste getallen. De 8 laagste getallen vertalen we in 8 opeenvolgende positieve getallen. Het eerste getal is [het aantal vakjes van het inlegvierkant +1]/2 , dus [3x3+1]/2 = 5. De getallen 8 t/m 1 vertalen we in 5 t/m 12. De getallen 18 t/m 25 vertalen we in -5 t/m -12; zie onderstaande vertaaltabel.

 

 

12

1

11

2

10

3

9

4

8

5

7

6

6

7

5

8

-5

18

-6

19

-7

20

-8

21

-9

22

-10

23

-11

24

-12

25

 

 

Elke zijde bestaat uit 2 + 3 getallen en dat kunnen 2 positieve plus 3 negatieve of 2 negatieve plus 3 positieve getallen zijn. De uitkomst van elke zijde moet 0 zijn. Bovendien komen in de twee uit te puzzelen zijden twee getallen dubbel voor (namelijk de getallen op de hoekpunten). Twee zijden hebben twee reeksen van 2 getallen en twee reeksen van drie getallen, waarbij de twee dubbele getallen in één reeks helemaal niet in twee reeksen één van beide en in één reeks allebei moeten voorkomen. Zie onderstaande tabel:

 

 

5

6

7

8

9

10

11

12

84

 

 

 

 

 

10

11

 

21

 

 

 

 

9

 

 

12

21

5

 

7

 

9

 

 

 

21

 

6

7

8

 

 

 

 

21

 

 

N.B.: 5+6+7+8+9+10+11+12+7+9 = 84 en de som van elke reeks moet 84/4 is 21 zijn. Vul in twee zijden één reeks positief en één reeks negatief in en zet de dubbele getallen 7 en 9 in de hoekpunten.

 

Puzzel zelf de rand uit met behulp van onderstaande download.

 

Deze methode werkt voor grootte is oneven van 5x5 tot oneindig. Zie op deze website uitgewerkt voor 5x57x79x911x1113x1315x1517x1719x1921x2123x2325x2527x2729x29 en 31x31

 

Zie het concentrisch magisch vierkant op deze website steeds groter worden met het 3x34x45x56x67x78x89x910x1011x1112x1213x1314x1415x1516x1617x1718x1819x1920x2021x2122x2223x2324x2425x2526x2627x2728x2829x2930x3031x31 en 32x32 concentrisch magisch vierkant.

 

Download
5x5, 3x3 in 5x5 & concentrisch.xls
Microsoft Excel werkblad 30.0 KB