### Nasik 16x16x16 magic cube (Medjig method 3D)

See for explanation about the Medjig method to construct a magic square: 6x6 magic square.

The first grid consists of the 2x2x2 'blown up' Dwane Campbell's 8x8x8 Nasik magic cube. The second grid consists not of the 2x2 Medjig tiles with the numbers 0 up to 3, but consists of the 2x2x2 Medjig blocks with the numbers 0 up to 7. My secret is that I used the grid to of a Nasik 8x8x8 magic cube, which happened to be a Medjig grid 3D.

Take 1x number from first grid with 2x2x2 'blown up' 8x8x8 D. Campbell [level 1]

 1 1 252 252 309 309 464 464 145 145 108 108 421 421 352 352 1 1 252 252 309 309 464 464 145 145 108 108 421 421 352 352 429 429 344 344 153 153 100 100 317 317 456 456 9 9 244 244 429 429 344 344 153 153 100 100 317 317 456 456 9 9 244 244 220 220 33 33 496 496 277 277 76 76 177 177 384 384 389 389 220 220 33 33 496 496 277 277 76 76 177 177 384 384 389 389 376 376 397 397 68 68 185 185 488 488 285 285 212 212 41 41 376 376 397 397 68 68 185 185 488 488 285 285 212 212 41 41 2 2 251 251 310 310 463 463 146 146 107 107 422 422 351 351 2 2 251 251 310 310 463 463 146 146 107 107 422 422 351 351 430 430 343 343 154 154 99 99 318 318 455 455 10 10 243 243 430 430 343 343 154 154 99 99 318 318 455 455 10 10 243 243 219 219 34 34 495 495 278 278 75 75 178 178 383 383 390 390 219 219 34 34 495 495 278 278 75 75 178 178 383 383 390 390 375 375 398 398 67 67 186 186 487 487 286 286 211 211 42 42 375 375 398 398 67 67 186 186 487 487 286 286 211 211 42 42

+512x number from second level with 2x2x2 Medjig blocks [level 1]

 0 6 3 5 0 6 3 5 7 1 4 2 7 1 4 2 3 5 0 6 3 5 0 6 4 2 7 1 4 2 7 1 4 2 7 1 4 2 7 1 3 5 0 6 3 5 0 6 7 1 4 2 7 1 4 2 0 6 3 5 0 6 3 5 0 6 3 5 0 6 3 5 7 1 4 2 7 1 4 2 3 5 0 6 3 5 0 6 4 2 7 1 4 2 7 1 4 2 7 1 4 2 7 1 3 5 0 6 3 5 0 6 7 1 4 2 7 1 4 2 0 6 3 5 0 6 3 5 0 6 3 5 0 6 3 5 7 1 4 2 7 1 4 2 3 5 0 6 3 5 0 6 4 2 7 1 4 2 7 1 4 2 7 1 4 2 7 1 3 5 0 6 3 5 0 6 7 1 4 2 7 1 4 2 0 6 3 5 0 6 3 5 0 6 3 5 0 6 3 5 7 1 4 2 7 1 4 2 3 5 0 6 3 5 0 6 4 2 7 1 4 2 7 1 4 2 7 1 4 2 7 1 3 5 0 6 3 5 0 6 7 1 4 2 7 1 4 2 0 6 3 5 0 6 3 5

= 16x16x16 Nasik (= pandiagonal & pantriagonal) magic cube [level 1]

 1 3073 1788 2812 309 3381 2000 3024 3729 657 2156 1132 4005 933 2400 1376 1537 2561 252 3324 1845 2869 464 3536 2193 1169 3692 620 2469 1445 3936 864 2477 1453 3928 856 2201 1177 3684 612 1853 2877 456 3528 1545 2569 244 3316 4013 941 2392 1368 3737 665 2148 1124 317 3389 1992 3016 9 3081 1780 2804 220 3292 1569 2593 496 3568 1813 2837 3660 588 2225 1201 3968 896 2437 1413 1756 2780 33 3105 2032 3056 277 3349 2124 1100 3761 689 2432 1408 3973 901 2424 1400 3981 909 2116 1092 3769 697 2024 3048 285 3357 1748 2772 41 3113 3960 888 2445 1421 3652 580 2233 1209 488 3560 1821 2845 212 3284 1577 2601 2 3074 1787 2811 310 3382 1999 3023 3730 658 2155 1131 4006 934 2399 1375 1538 2562 251 3323 1846 2870 463 3535 2194 1170 3691 619 2470 1446 3935 863 2478 1454 3927 855 2202 1178 3683 611 1854 2878 455 3527 1546 2570 243 3315 4014 942 2391 1367 3738 666 2147 1123 318 3390 1991 3015 10 3082 1779 2803 219 3291 1570 2594 495 3567 1814 2838 3659 587 2226 1202 3967 895 2438 1414 1755 2779 34 3106 2031 3055 278 3350 2123 1099 3762 690 2431 1407 3974 902 2423 1399 3982 910 2115 1091 3770 698 2023 3047 286 3358 1747 2771 42 3114 3959 887 2446 1422 3651 579 2234 1210 487 3559 1822 2846 211 3283 1578 2602

1/2 rows/columns/diagonals in each level give 1/2 of the magic sum and pandiagonals in each level and pillars, pandiagonals and (pan)triagonals through the levels give the magic sum.

See for all levels and check if all numbers are in the magic cube and addition of the numbers give the right magic sum, the download below.

With method of Medjig you can construct a magic cube of even order. See on this website the construction of:

16x16x16, Medjig.xls