The challenge was to construct an inlaid magic square with even and odd inlay magic squares in it. See below how I did it.
The design
The design of the 20x20 inlay square is as follows:
In the corners are four 7x7 panmagic squares. Around the 7x7 panmagic squares are half borders. The ‘cross’ in the middle consists of five panmagic 4x4 squares (and eight half panmagic suares, in which two times two numbers have been swapped to make the magic square valid; see explained later). In the 20x20 inlay square (at first) are the numbers 1 up to 400 (later on added by 42). I used the numbers 103 up to 298 to construct the four panmagic 7x7 squares. I used the numbers 73 up to 102 and 299 up to 328 to construct the half borders. I used the numbers 1 up to 72 and 329 up to 400 to construct the five whole and eight half panmagic 4x4 squares.
The four panmagic 7x7 squares
To construct the four panmagic 7x7 squares we use the same method to construct a composite 21x21 magic square. As row coordinates we use the numbers 0 up to 6. As column coordinates we use the numbers 0 up to 27 and we try to get the four panmagic 7x7 squares as proportional as possible.
Column coordinates first square Row coordinates first square
0 |
4 |
11 |
13 |
18 |
23 |
25 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||
11 |
13 |
18 |
23 |
25 |
0 |
4 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||
18 |
23 |
25 |
0 |
4 |
11 |
13 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||
25 |
0 |
4 |
11 |
13 |
18 |
23 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||
4 |
11 |
13 |
18 |
23 |
25 |
0 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||
13 |
18 |
23 |
25 |
0 |
4 |
11 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||
23 |
25 |
0 |
4 |
11 |
13 |
18 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
7x column+1x row coord.+1+102 = First panmagic 7x7 square
1 |
30 |
80 |
95 |
131 |
167 |
182 |
103 |
132 |
182 |
197 |
233 |
269 |
284 |
||
81 |
96 |
132 |
168 |
176 |
2 |
31 |
183 |
198 |
234 |
270 |
278 |
104 |
133 |
||
133 |
162 |
177 |
3 |
32 |
82 |
97 |
235 |
264 |
279 |
105 |
134 |
184 |
199 |
||
178 |
4 |
33 |
83 |
98 |
127 |
163 |
280 |
106 |
135 |
185 |
200 |
229 |
265 |
||
34 |
84 |
92 |
128 |
164 |
179 |
5 |
136 |
186 |
194 |
230 |
266 |
281 |
107 |
||
93 |
129 |
165 |
180 |
6 |
35 |
78 |
195 |
231 |
267 |
282 |
108 |
137 |
180 |
||
166 |
181 |
7 |
29 |
79 |
94 |
130 |
268 |
283 |
109 |
131 |
181 |
196 |
232 |
Column coordinates second square Row coordinates second square
2 |
5 |
9 |
15 |
16 |
21 |
26 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||
9 |
15 |
16 |
21 |
26 |
2 |
5 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||
16 |
21 |
26 |
2 |
5 |
9 |
15 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||
26 |
2 |
5 |
9 |
15 |
16 |
21 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||
5 |
9 |
15 |
16 |
21 |
26 |
2 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||
15 |
16 |
21 |
26 |
2 |
5 |
9 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||
21 |
26 |
2 |
5 |
9 |
15 |
16 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
7x column+1x row coord.+1+102 = Second panmagic 7x7 square
15 |
37 |
66 |
109 |
117 |
153 |
189 |
117 |
139 |
168 |
211 |
219 |
255 |
291 |
||
67 |
110 |
118 |
154 |
183 |
16 |
38 |
169 |
212 |
220 |
256 |
285 |
118 |
140 |
||
119 |
148 |
184 |
17 |
39 |
68 |
111 |
221 |
250 |
286 |
119 |
141 |
170 |
213 |
||
185 |
18 |
40 |
69 |
112 |
113 |
149 |
287 |
120 |
142 |
171 |
214 |
215 |
251 |
||
41 |
70 |
106 |
114 |
150 |
186 |
19 |
143 |
172 |
208 |
216 |
252 |
288 |
121 |
||
107 |
115 |
151 |
187 |
20 |
42 |
64 |
209 |
217 |
253 |
289 |
122 |
144 |
166 |
||
152 |
188 |
21 |
36 |
65 |
108 |
116 |
254 |
290 |
123 |
138 |
167 |
210 |
218 |
Column coordinates third square Row coordinates third square
3 |
7 |
10 |
14 |
17 |
20 |
24 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||
10 |
14 |
17 |
20 |
24 |
3 |
7 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||
17 |
20 |
24 |
3 |
7 |
10 |
14 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||
24 |
3 |
7 |
10 |
14 |
17 |
20 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||
7 |
10 |
14 |
17 |
20 |
24 |
3 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||
14 |
17 |
20 |
24 |
3 |
7 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||
20 |
24 |
3 |
7 |
10 |
14 |
17 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
7x column+1x row coord.+1+102 = Third panmagic 7x7 square
22 |
51 |
73 |
102 |
124 |
146 |
175 |
124 |
153 |
175 |
204 |
226 |
248 |
277 |
||
74 |
103 |
125 |
147 |
169 |
23 |
52 |
176 |
205 |
227 |
249 |
271 |
125 |
154 |
||
126 |
141 |
170 |
24 |
53 |
75 |
104 |
228 |
243 |
272 |
126 |
155 |
177 |
206 |
||
171 |
25 |
54 |
76 |
105 |
120 |
142 |
273 |
127 |
156 |
178 |
207 |
222 |
244 |
||
55 |
77 |
99 |
121 |
143 |
172 |
26 |
157 |
179 |
201 |
223 |
245 |
274 |
128 |
||
100 |
122 |
144 |
173 |
27 |
56 |
71 |
202 |
224 |
246 |
275 |
129 |
158 |
173 |
||
145 |
174 |
28 |
50 |
72 |
101 |
123 |
247 |
276 |
130 |
152 |
174 |
203 |
225 |
Column coordinates fourth square Row coordinates fourth square
1 |
6 |
8 |
12 |
19 |
22 |
27 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||
8 |
12 |
19 |
22 |
27 |
1 |
6 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||
19 |
22 |
27 |
1 |
6 |
8 |
12 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||
27 |
1 |
6 |
8 |
12 |
19 |
22 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||
6 |
8 |
12 |
19 |
22 |
27 |
1 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||
12 |
19 |
22 |
27 |
1 |
6 |
8 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||
22 |
27 |
1 |
6 |
8 |
12 |
19 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
7x column+1x row coord.+1+102 = Fourth panmagic 7x7 square
8 |
44 |
59 |
88 |
138 |
160 |
196 |
110 |
146 |
161 |
190 |
240 |
262 |
298 |
||
60 |
89 |
139 |
161 |
190 |
9 |
45 |
162 |
191 |
241 |
263 |
292 |
111 |
147 |
||
140 |
155 |
191 |
10 |
46 |
61 |
90 |
242 |
257 |
293 |
112 |
148 |
163 |
192 |
||
192 |
11 |
47 |
62 |
91 |
134 |
156 |
294 |
113 |
149 |
164 |
193 |
236 |
258 |
||
48 |
63 |
85 |
135 |
157 |
193 |
12 |
150 |
165 |
187 |
237 |
259 |
295 |
114 |
||
86 |
136 |
158 |
194 |
13 |
49 |
57 |
188 |
238 |
260 |
296 |
115 |
151 |
159 |
||
159 |
195 |
14 |
43 |
58 |
87 |
137 |
261 |
297 |
116 |
145 |
160 |
189 |
239 |
Put the first and second panmagic 7x7 square on top and the third and fourth panmagic 7x7 square at the bottom. That give the following sum totals of the rows, the columns and the diagonals:
2807 |
2807 |
2807 |
2807 |
2807 |
2807 |
2807 |
2807 |
2807 |
2807 |
2807 |
|