For explanation of the Medjig method, see 6x6 magic square.
The first grid is a 2x2 'blown up' pure 5x5 magic square. Construct the second grid using 25 Medjig tiles.
In a (2x2) medjig tile are all the numbers from 0 up to 3, but each time in a different order. Take care that the sum of the numbers in each
row/column/diagonal is (10 x 1,5 =) 15.
Take 1x number from first grid and add 25x number from the same cell of the second grid.
1x number + 25x number = pure magic 10x10 square
17 | 17 | 24 | 24 | 1 | 1 | 8 | 8 | 15 | 15 | 0 | 1 | 3 | 0 | 0 | 3 | 0 | 3 | 3 | 2 | 17 | 42 | 99 | 24 | 1 | 76 | 8 | 83 | 90 | 65 | ||||
17 | 17 | 24 | 24 | 1 | 1 | 8 | 8 | 15 | 15 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 0 | 67 | 92 | 74 | 49 | 51 | 26 | 58 | 33 | 40 | 15 | ||||
23 | 23 | 5 | 5 | 7 | 7 | 14 | 14 | 16 | 16 | 0 | 2 | 1 | 3 | 0 | 3 | 2 | 0 | 1 | 3 | 23 | 73 | 30 | 80 | 7 | 82 | 64 | 14 | 41 | 91 | ||||
23 | 23 | 5 | 5 | 7 | 7 | 14 | 14 | 16 | 16 | 3 | 1 | 0 | 2 | 2 | 1 | 3 | 1 | 2 | 0 | 98 | 48 | 5 | 55 | 57 | 32 | 89 | 39 | 66 | 16 | ||||
4 | 4 | 6 | 6 | 13 | 13 | 20 | 20 | 22 | 22 | 2 | 0 | 0 | 1 | 3 | 2 | 0 | 3 | 1 | 3 | 54 | 4 | 6 | 31 | 88 | 63 | 20 | 95 | 47 | 97 | ||||
4 | 4 | 6 | 6 | 13 | 13 | 20 | 20 | 22 | 22 | 1 | 3 | 3 | 2 | 1 | 0 | 2 | 1 | 2 | 0 | 29 | 79 | 81 | 56 | 38 | 13 | 70 | 45 | 72 | 22 | ||||
10 | 10 | 12 | 12 | 19 | 19 | 21 | 21 | 3 | 3 | 0 | 2 | 1 | 3 | 3 | 0 | 2 | 0 | 1 | 3 | 10 | 60 | 37 | 87 | 94 | 19 | 71 | 21 | 28 | 78 | ||||
10 | 10 | 12 | 12 | 19 | 19 | 21 | 21 | 3 | 3 | 3 | 1 | 0 | 2 | 1 | 2 | 3 | 1 | 2 | 0 | 85 | 35 | 12 | 62 | 44 | 69 | 96 | 46 | 53 | 3 | ||||
11 | 11 | 18 | 18 | 25 | 25 | 2 | 2 | 9 | 9 | 3 | 2 | 3 | 0 | 1 | 3 | 0 | 2 | 0 | 1 | 86 | 61 | 93 | 18 | 50 | 100 | 2 | 52 | 9 | 34 | ||||
11 | 11 | 18 | 18 | 25 | 25 | 2 | 2 | 9 | 9 | 1 | 0 | 2 | 1 | 2 | 0 | 1 | 3 | 2 | 3 | 36 | 11 | 68 | 43 | 75 | 25 | 27 | 77 | 59 | 84 |
Use this method to construct even magic squares.
See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 en 32x32