### Medjig method

For explanation of the Medjig method, see 6x6 magic square.

The first grid is a 2x2 'blown up' pure 5x5 magic square. Construct the second grid using 25 Medjig tiles.

I
n a (2x2) medjig tile are all the numbers from 0 up to 3, but each time in a different order. Take care that the sum of the numbers in each row/column/diagonal is (10 x 1,5 =) 15.

Take 1x number from first grid and add 25x number from the same cell of the second grid.

1x number                                     + 25x number                           =    pure magic 10x10 square

 17 17 24 24 1 1 8 8 15 15 0 1 3 0 0 3 0 3 3 2 17 42 99 24 1 76 8 83 90 65 17 17 24 24 1 1 8 8 15 15 2 3 2 1 2 1 2 1 1 0 67 92 74 49 51 26 58 33 40 15 23 23 5 5 7 7 14 14 16 16 0 2 1 3 0 3 2 0 1 3 23 73 30 80 7 82 64 14 41 91 23 23 5 5 7 7 14 14 16 16 3 1 0 2 2 1 3 1 2 0 98 48 5 55 57 32 89 39 66 16 4 4 6 6 13 13 20 20 22 22 2 0 0 1 3 2 0 3 1 3 54 4 6 31 88 63 20 95 47 97 4 4 6 6 13 13 20 20 22 22 1 3 3 2 1 0 2 1 2 0 29 79 81 56 38 13 70 45 72 22 10 10 12 12 19 19 21 21 3 3 0 2 1 3 3 0 2 0 1 3 10 60 37 87 94 19 71 21 28 78 10 10 12 12 19 19 21 21 3 3 3 1 0 2 1 2 3 1 2 0 85 35 12 62 44 69 96 46 53 3 11 11 18 18 25 25 2 2 9 9 3 2 3 0 1 3 0 2 0 1 86 61 93 18 50 100 2 52 9 34 11 11 18 18 25 25 2 2 9 9 1 0 2 1 2 0 1 3 2 3 36 11 68 43 75 25 27 77 59 84

Use this method to construct even magic squares.

See 6x68x810x1012x1214x1416x1618x1820x2022x2224x2426x2628x2830x30 en 32x32

10x10, Medjig method.xls