Sudoku method (1)

 

Use four grids with 4x4 Sudoku patterns to construct a 16x16 most perfect (Franklin pan)magic square. See for more detailed information, the 4x4 and 8x8 magic square.

 

 

Take 4x number from first grid +1                            + 1x number from second grid 

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

   

0

1

3

2

2

3

1

0

0

1

3

2

2

3

1

0

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

   

3

2

0

1

1

0

2

3

3

2

0

1

1

0

2

3

 

 

+ 16x number from third grid                                    + 64x number from fourth grid

2

3

0

1

2

3

0

1

0

1

2

3

0

1

2

3

   

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

1

2

3

0

1

2

3

2

3

0

1

2

3

0

1

   

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

3

2

1

0

3

2

1

0

1

0

3

2

1

0

3

2

   

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

1

0

3

2

1

0

3

2

3

2

1

0

3

2

1

0

   

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

2

1

0

3

2

1

0

1

0

3

2

1

0

3

2

   

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

1

0

3

2

1

0

3

2

3

2

1

0

3

2

1

0

   

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

2

3

0

1

2

3

0

1

0

1

2

3

0

1

2

3

   

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

0

1

2

3

0

1

2

3

2

3

0

1

2

3

0

1

   

3

0

3

0

3

0

3

0

3

0

3

0

3

0

3

0

2

3

0

1

2

3

0

1

0

1

2

3

0

1

2

3

   

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

0

1

2

3

0

1

2

3

2

3

0

1

2

3

0

1

   

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

3

2

1

0

3

2

1

0

1

0

3

2

1

0

3

2

   

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

0

3

2

1

0

3

2

3

2

1

0

3

2

1

0

   

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

3

2

1

0

3

2

1

0

1

0

3

2

1

0

3

2

   

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

0

3

2

1

0

3

2

3

2

1

0

3

2

1

0

   

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

3

0

1

2

3

0