### Sudoku method (1)

Use four grids with 4x4 Sudoku patterns to construct a 16x16 most perfect (Franklin pan)magic square. See for more detailed information, the 4x4 and 8x8 magic square.

Take 4x number from first grid +1                            + 1x number from second grid

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 2 0 1 1 0 2 3 3 2 0 1 1 0 2 3

+ 16x number from third grid                                    + 64x number from fourth grid

 2 3 0 1 2 3 0 1 0 1 2 3 0 1 2 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 2 3 0 1 2 3 2 3 0 1 2 3 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 3 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 3 2 1 0 3 2 3 2 1 0 3 2 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 1 0 3 2 1 0 3 2 3 2 1 0 3 2 1 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 2 3 0 1 2 3 0 1 0 1 2 3 0 1 2 3 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 1 2 3 0 1 2 3 2 3 0 1 2 3 0 1 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 2 3 0 1 2 3 0 1 0 1 2 3 0 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 1 2 3 0 1 2 3 2 3 0 1 2 3 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 0 3 2 1 0 3 2 3 2 1 0 3 2 1 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 3 2 1 0 3 2 3 2 1 0 3 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 0 1 2 3 0