Paulus Gerdes introduced the Liki magic square (see http://plus.maths.org/content/new-designs-africa). He showed that it is possible to transform a square with consecutive numbers into a magic square by swapping half of the numbers symmetrically. You can use this method to construct magic squares which are a multiple of 4 (= 4x4, 8x8, 12x12, 16x16, ... magic square).
Paulus Gerdes constructed the following symmetric 8x8 magic square:
8x8 square with consecutive numbers
232 |
240 |
248 |
256 |
264 |
272 |
280 |
288 |
|||
260 |
260 |
|||||||||
36 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
||
100 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
||
164 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
||
228 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
||
292 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
||
356 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
||
420 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
||
484 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
Symmetric 8x8 magic square
260 |
260 |
260 |
260 |
260 |
260 |
260 |
260 |
|||
260 |
260 |
|||||||||
260 |
1 |
63 |
3 |
61 |
60 |
6 |
58 |
8 |
||
260 |
56 |
55 |
11 |
12 |
13 |
14 |
50 |
49 |
||
260 |
17 |
18 |
46 |
45 |
44 |
43 |
23 |
24 |
||
260 |
40 |
26 |
38 |
28 |
29 |
35 |
31 |
33 |
||
260 |
32 |
34 |
30 |
36 |
37 |
27 |
39 |
25 |
||
260 |
41 |
42 |
22 |
21 |
20 |
19 |
47 |
48 |
||
260 |
16 |
15 |
51 |
52 |
53 |
54 |
10 |
9 |
||
260 |
57 |
7 |
59 |
5 |
4 |
62 |
2 |
64 |
It is a beautiful result, but it is possible to get a more magic result.
52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 | ||||
180 | 184 | 188 | 192 | 196 | 200 | 204 | 208 | ||||
260 | 260 | ||||||||||
10 | 26 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
42 | 58 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
74 | 90 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ||
106 | 122 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | ||
138 | 154 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | ||
170 | 186 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | ||
202 | 218 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | ||
234 | 250 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | ||||
130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | ||||
260 | 260 | ||||||||||
130 | 130 | 1 | 63 | 62 | 4 | 5 | 59 | 58 | 8 | ||
130 | 130 | 56 | 10 | 11 | 53 | 52 | 14 | 15 | 49 | ||
130 | 130 | 48 | 18 | 19 | 45 | 44 | 22 | 23 | 41 | ||
130 | 130 | 25 | 39 | 38 | 28 | 29 | 35 | 34 | 32 | ||
130 | 130 | 33 | 31 | 30 | 36 | 37 | 27 | 26 | 40 | ||
130 | 130 | 24 | 42 | 43 | 21 | 20 | 46 | 47 | 17 | ||
130 | 130 | 16 | 50 | 51 | 13 | 12 | 54 | 55 | 9 | ||
130 | 130 | 57 | 7 | 6 | 60 | 61 | 3 | 2 | 64 |
Each 1/2 row/column gives 1/2 of the magic sum.
By refining the grids you can construct an ultramagic 8x8 square.
1x number from first grid + 1x [number -/- 1] from second grid =
1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | ||
3 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | ||
3 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | ||
1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | ||
3 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 9 | 9 | 10 | 10 | 11 | 11 | 12 | 12 | ||
1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 9 | 9 | 10 | 10 | 11 | 11 | 12 | 12 | ||
1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | ||
3 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 |
symmetric transformation = Ultra magic 8x8 square
1 | 2 | 6 | 5 | 10 | 9 | 13 | 14 | 1 | 63 | 6 | 60 | 10 | 56 | 13 | 51 | ||
3 | 4 | 8 | 7 | 12 | 11 | 15 | 16 | 62 | 4 | 57 | 7 | 53 | 11 | 50 | 16 | ||
19 | 20 | 24 | 23 | 28 | 27 | 31 | 32 | 19 | 45 | 24 | 42 | 28 | 38 | 31 | 33 | ||
17 | 18 | 22 | 21 | 26 | 25 | 29 | 30 | 48 | 18 | 43 | 21 | 39 | 25 | 36 | 30 | ||
35 | 36 | 40 | 39 | 44 | 43 | 47 | 48 | 35 | 29 | 40 | 26 | 44 | 22 | 47 | 17 | ||
33 | 34 | 38 | 37 | 42 | 41 | 45 | 46 | 32 | 34 | 27 | 37 | 23 | 41 | 20 | 46 | ||
49 | 50 | 54 | 53 | 58 | 57 | 61 | 62 | 49 | 15 | 54 | 12 | 58 | 8 | 61 | 3 | ||
51 | 52 | 56 | 55 | 60 | 59 | 63 | 64 | 14 | 52 | 9 | 55 | 5 | 59 | 2 | 64 |
This 8x8 magic square is panmagic, 2x2 compact, symmetric and each 1/2 row/column gives 1/2 of the magic sum.
Use this method to construct magic squares of order is multiple of 4 from 4x4 to infinity. See 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28, 32x32