Pan 13x13 in 15x15 magic square (1)

 

Take a panmagic 13x13 square and add 28 to all numbers, so in the 13x13 inlay are the 169 middle numbers from 29 up to 197.

 

In the border are the 28 lowest (1 up to 28) and the 28 highest (198 up to 225) numbers. Read the explanation on webpage 3x3 in 5x5 & concentric, how to construct the border.

 

See in the download below how the 15x15 border has been constructed or use the download to puzzle your own border.

 

The result is:

 

 

Pan 13x13 in 15x15 magic square

15

28

25

23

21

19

18

213

214

215

219

221

223

224

17

199

29

171

134

109

84

59

190

178

153

128

103

78

53

27

200

195

183

146

132

95

70

45

33

164

139

114

89

64

26

202

50

38

169

144

107

93

56

187

175

150

125

100

75

24

204

61

192

180

155

130

105

68

54

30

161

136

111

86

22

206

72

47

35

166

141

116

91

66

185

184

147

122

97

20

210

83

58

189

177

152

127

102

77

52

40

159

145

108

16

212

106

69

44

32

163

138

113

88

63

194

182

157

120

14

10

118

81

67

186

174

149

124

99

74

49

37

168

143

216

9

129

104

79

42

41

160

135

110

85

60

191

179

154

217

8

140

115

90

65

196

172

158

121

96

71

46

34

165

218

6

151

126

101

76

51

39

170

133

119

82

57

188

176

220

4

162

137

112

87

62

193

181

156

131

94

80

43

31

222

1

173

148

123

98

73

48

36

167

142

117

92

55

197

225

209

198

201

203

205

207

208

13

12

11

7

5

3

2

211

 

 

You can use this method to construct magic squares of odd order from 5x5 to infinity. See on this website 5x57x79x911x1113x1315x1517x1719x1921x2123x2325x2527x2729x29 31x31

 

Download
15x15, pan 13x13 in 15x15 (1).xls
Microsoft Excel werkblad 48.0 KB