Take a panmagic 13x13 square and add 28 to all numbers, so in the 13x13 inlay are the 169 middle numbers from 29 up to 197.
In the border are the 28 lowest (1 up to 28) and the 28 highest (198 up to 225) numbers. Read the explanation on webpage 3x3 in 5x5 & concentric, how to construct the border.
See in the download below how the 15x15 border has been constructed or use the download to puzzle your own border.
The result is:
Pan 13x13 in 15x15 magic square
15 |
28 |
25 |
23 |
21 |
19 |
18 |
213 |
214 |
215 |
219 |
221 |
223 |
224 |
17 |
199 |
29 |
171 |
134 |
109 |
84 |
59 |
190 |
178 |
153 |
128 |
103 |
78 |
53 |
27 |
200 |
195 |
183 |
146 |
132 |
95 |
70 |
45 |
33 |
164 |
139 |
114 |
89 |
64 |
26 |
202 |
50 |
38 |
169 |
144 |
107 |
93 |
56 |
187 |
175 |
150 |
125 |
100 |
75 |
24 |
204 |
61 |
192 |
180 |
155 |
130 |
105 |
68 |
54 |
30 |
161 |
136 |
111 |
86 |
22 |
206 |
72 |
47 |
35 |
166 |
141 |
116 |
91 |
66 |
185 |
184 |
147 |
122 |
97 |
20 |
210 |
83 |
58 |
189 |
177 |
152 |
127 |
102 |
77 |
52 |
40 |
159 |
145 |
108 |
16 |
212 |
106 |
69 |
44 |
32 |
163 |
138 |
113 |
88 |
63 |
194 |
182 |
157 |
120 |
14 |
10 |
118 |
81 |
67 |
186 |
174 |
149 |
124 |
99 |
74 |
49 |
37 |
168 |
143 |
216 |
9 |
129 |
104 |
79 |
42 |
41 |
160 |
135 |
110 |
85 |
60 |
191 |
179 |
154 |
217 |
8 |
140 |
115 |
90 |
65 |
196 |
172 |
158 |
121 |
96 |
71 |
46 |
34 |
165 |
218 |
6 |
151 |
126 |
101 |
76 |
51 |
39 |
170 |
133 |
119 |
82 |
57 |
188 |
176 |
220 |
4 |
162 |
137 |
112 |
87 |
62 |
193 |
181 |
156 |
131 |
94 |
80 |
43 |
31 |
222 |
1 |
173 |
148 |
123 |
98 |
73 |
48 |
36 |
167 |
142 |
117 |
92 |
55 |
197 |
225 |
209 |
198 |
201 |
203 |
205 |
207 |
208 |
13 |
12 |
11 |
7 |
5 |
3 |
2 |
211 |
You can use this method to construct magic squares of odd order from 5x5 to infinity. See on this website 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31