### Basic pattern method (1)

Use 4x the same panmagic 4x4 square and 2 fixed grids to construct a Franklin panmagic 8x8 square.

 1x number from 4x the same panm. 4x4 15 6 12 1 15 6 12 1 4 9 7 14 4 9 7 14 5 16 2 11 5 16 2 11 10 3 13 8 10 3 13 8 15 6 12 1 15 6 12 1 4 9 7 14 4 9 7 14 5 16 2 11 5 16 2 11 10 3 13 8 10 3 13 8 +16x number from fixed grid 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 +32x number from fixed grid 2 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 = Franklin panmagic 8x8 square 15 54 28 33 31 38 12 49 52 9 39 30 36 25 55 14 37 32 50 11 53 16 34 27 26 35 13 56 10 51 29 40 47 22 60 1 63 6 44 17 20 41 7 62 4 57 23 46 5 64 18 43 21 48 2 59 58 3 45 24 42 19 61 8

Notify that this Franklin panmagic 8x8 square has the extra tight Willem Barink structure.

Use basic pattern method (1) to construct magic squares of order is multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16a, 16x16b, 16x16c, 20x20, 24x24a, 24x24b, 28x2832x32a, 32x32b, 32x32c and 32x32d

8x8, Basic pattern method (1).xls
Microsoft Excel werkblad 81.0 KB