See for detailed explanation, webpage pan 4x4 in 6x6
Take a 10x10 magic square and add 22 to all numbers to get the 10x10 inlay and construct the 12x12 border.
The final result is:
10x10 in 12x12 magic square
| 13 | 2 | 5 | 16 | 20 | 141 | 138 | 135 | 133 | 127 | 126 | 14 | 
| 142 | 39 | 64 | 121 | 46 | 23 | 98 | 30 | 105 | 112 | 87 | 3 | 
| 137 | 89 | 114 | 96 | 71 | 73 | 48 | 80 | 55 | 62 | 37 | 8 | 
| 136 | 45 | 95 | 52 | 102 | 29 | 104 | 86 | 36 | 63 | 113 | 9 | 
| 130 | 120 | 70 | 27 | 77 | 79 | 54 | 111 | 61 | 88 | 38 | 15 | 
| 124 | 76 | 26 | 28 | 53 | 110 | 85 | 42 | 117 | 69 | 119 | 21 | 
| 22 | 51 | 101 | 103 | 78 | 60 | 35 | 92 | 67 | 94 | 44 | 123 | 
| 17 | 32 | 82 | 59 | 109 | 116 | 41 | 93 | 43 | 50 | 100 | 128 | 
| 11 | 107 | 57 | 34 | 84 | 66 | 91 | 118 | 68 | 75 | 25 | 134 | 
| 6 | 108 | 83 | 115 | 40 | 72 | 122 | 24 | 74 | 31 | 56 | 139 | 
| 1 | 58 | 33 | 90 | 65 | 97 | 47 | 49 | 99 | 81 | 106 | 144 | 
| 131 | 143 | 140 | 129 | 125 | 4 | 7 | 10 | 12 | 18 | 19 | 132 | 
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32