48 of the 880 pure magic 4x4 squares are panmagic (= group 1). These squares have (just like the larger most perfect magic squares) the following structure:
| 
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 15  | 
        
| 
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 6  | 
        
| 
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 9  | 
        
| 
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 4  | 
        
    
The sum
    of two numbers of the same colour is each time (the lowest plus the highest number of the magic square: 1+16=) 17.
You need to know only the following panmagic 4x4 basic squares, to construct all 48 panmagic 4x4 squares (excluding rotation and/or mirroring):
| 
                 1  | 
            
                 8  | 
            
                 13  | 
            
                 12  | 
            
                 1  | 
            
                 8  | 
            
                 11  | 
            
                 14  | 
            
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 15  | 
        ||||
| 
                 15  | 
            
                 10  | 
            
                 3  | 
            
                 6  | 
            
                 15  | 
            
                 10  | 
            
                 5  | 
            
                 4  | 
            
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 4  | 
        ||||
| 
                 4  | 
            
                 5  | 
            
                 16  | 
            
                 9  | 
            
                 6  | 
            
                 3  | 
            
                 16  | 
            
                 9  | 
            
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 9  | 
        ||||
| 
                 14  | 
            
                 11  | 
            
                 2  | 
            
                 7  | 
            
                 12  | 
            
                 13  | 
            
                 2  | 
            
                 7  | 
            
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 6  | 
        
Make a 2x2 carpet of one of the basic squares and you can get all 16 (x 3 = 48) squares by shifting on the carpet. See for example:
| 
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 15  | 
            
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 15  | 
        
| 
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 6  | 
            
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 6  | 
        
| 
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 9  | 
            
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 9  | 
        
| 
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 4  | 
            
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 4  | 
        
| 
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 15  | 
            
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 15  | 
        
| 
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 6  | 
            
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 6  | 
        
| 
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 9  | 
            
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 9  | 
        
| 
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 4  | 
            
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 4  | 
        
You can get 8 results in stead of 1 result of the above yellow marked square by rotating and/or mirroring:
| 
                 yellow marked square  | 
            
                 4  | 
            
                 14  | 
            
                 11  | 
            
                 5  | 
            
                 Mirroring  | 
            
                 5  | 
            
                 11  | 
            
                 14  | 
            
                 4  | 
        ||||||
| 
                 15  | 
            
                 1  | 
            
                 8  | 
            
                 10  | 
            
                 10  | 
            
                 8  | 
            
                 1  | 
            
                 15  | 
        ||||||||
| 
                 6  | 
            
                 12  | 
            
                 13  | 
            
                 3  | 
            
                 3  | 
            
                 13  | 
            
                 12  | 
            
                 6  | 
        ||||||||
| 
                 9  | 
            
                 7  | 
            
                 2  | 
            
                 16  | 
            
                 16  | 
            
                 2  | 
            
                 7  | 
            
                 9  | 
        ||||||||
| 
                 rotation by 1 quarter  | 
            
                 9  | 
            
                 6  | 
            
                 15  | 
            
                 4  | 
            
                 Mirroring  | 
            
                 4  | 
            
                 15  | 
            
                 6  | 
            
                 9  | 
        ||||||
| 
                 7  | 
            
                 12  | 
            
                 1  | 
            
                 14  | 
            
                 14  | 
            
                 1  | 
            
                 12  | 
            
                 7  | 
        ||||||||
| 
                 2  | 
            
                 13  | 
            
                 8  | 
            
                 11  | 
            
                 11  | 
            
                 8  | 
            
                 13  | 
            
                 2  | 
        ||||||||
| 
                 16  | 
            
                 3  | 
            
                 10  | 
            
                 5  | 
            
                 5  | 
            
                 10  | 
            
                 3  | 
            
                 16  | 
        ||||||||
| 
                 rotation by 2 quarters  | 
            
                 16  | 
            
                 2  | 
            
                 7  | 
            
                 9  | 
            
                 Mirroring  | 
            
                 9  | 
            
                 7  | 
            
                 2  | 
            
                 16  | 
        ||||||
| 
                 3  | 
            
                 13  | 
            
                 12  | 
            
                 6  | 
            
                 6  | 
            
                 12  | 
            
                 13  | 
            
                 3  | 
        ||||||||
| 
                 10  | 
            
                 8  | 
            
                 1  | 
            
                 15  | 
            
                 15  | 
            
                 1  | 
            
                 8  | 
            
                 10  | 
        ||||||||
| 
                 5  | 
            
                 11  | 
            
                 14  | 
            
                 4  | 
            
                 4  | 
            
                 14  | 
            
                 11  | 
            
                 5  | 
        ||||||||
| 
                 rotation by 3 quarters  | 
            
                 5  | 
            
                 10  | 
            
                 3  | 
            
                 16  | 
            
                 Mirroring  | 
            
                 16  | 
            
                 3  | 
            
                 10  | 
            
                 5  | 
        ||||||
| 
                 11  | 
            
                 8  | 
            
                 13  | 
            
                 2  | 
            
                 2  | 
            
                 13  | 
            
                 8  | 
            
                 11  | 
        ||||||||
| 
                 14  | 
            
                 1  | 
            
                 12  | 
            
                 7  | 
            
                 7  | 
            
                 12  | 
            
                 1  | 
            
                 14  | 
        ||||||||
| 
                 4  | 
            
                 15  | 
            
                 6  | 
            
                 9  | 
            
                 9  | 
            
                 6  | 
            
                 15  | 
            
                 4  | 
        ||||||||
There are 3 basic 4x4 panmagic squares. There are 16 possibilities by shifting on the carpet. There are 8 possibilities by rotating and/or mirroring. This gives in total 3 x 16 x 8 is 384 possibilities (including rotating and/or mirroring).