Construct a row grid and a column grid. Use the middle numbers from 1 up to 11 to produce the 11x11 inlay with the shift method. Puzzle the border.
1x number from row grid +1
| 6 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 
| 0 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 12 | 
| 12 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 0 | 
| 12 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 
| 0 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 12 | 
| 0 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 
| 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 12 | 
| 12 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 0 | 
| 12 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 0 | 
| 0 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 12 | 
| 12 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 
| 12 | 11 | 10 | 9 | 8 | 7 | 5 | 4 | 3 | 2 | 1 | 0 | 6 | 
+13x number from column grid
| 0 | 0 | 0 | 12 | 12 | 12 | 12 | 12 | 12 | 0 | 0 | 0 | 6 | 
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 11 | 
| 7 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 5 | 
| 2 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 
| 8 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 4 | 
| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 9 | 
| 5 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 7 | 
| 9 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 3 | 
| 4 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 
| 10 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 5 | 6 | 2 | 
| 11 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 | 4 | 1 | 
| 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 0 | 
| 6 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 | 12 | 12 | 
= panmagic 11x11 in 13x13 magic square
| 7 | 2 | 3 | 160 | 161 | 162 | 164 | 165 | 166 | 11 | 12 | 13 | 79 | 
| 14 | 15 | 29 | 43 | 57 | 71 | 85 | 99 | 113 | 127 | 141 | 155 | 156 | 
| 92 | 134 | 148 | 19 | 33 | 47 | 61 | 75 | 89 | 103 | 106 | 120 | 78 | 
| 39 | 110 | 124 | 138 | 152 | 23 | 37 | 51 | 54 | 68 | 82 | 96 | 131 | 
| 117 | 86 | 100 | 114 | 128 | 142 | 145 | 16 | 30 | 44 | 58 | 72 | 53 | 
| 40 | 62 | 76 | 90 | 93 | 107 | 121 | 135 | 149 | 20 | 34 | 48 | 130 | 
| 66 | 38 | 41 | 55 | 69 | 83 | 97 | 111 | 125 | 139 | 153 | 24 | 104 | 
| 118 | 146 | 17 | 31 | 45 | 59 | 73 | 87 | 101 | 115 | 129 | 132 | 52 | 
| 65 | 122 | 136 | 150 | 21 | 35 | 49 | 63 | 77 | 80 | 94 | 108 | 105 | 
| 143 | 98 | 112 | 126 | 140 | 154 | 25 | 28 | 42 | 56 | 70 | 84 | 27 | 
| 144 | 74 | 88 | 102 | 116 | 119 | 133 | 147 | 18 | 32 | 46 | 60 | 26 | 
| 169 | 50 | 64 | 67 | 81 | 95 | 109 | 123 | 137 | 151 | 22 | 36 | 1 | 
| 91 | 168 | 167 | 10 | 9 | 8 | 6 | 5 | 4 | 159 | 158 | 157 | 163 | 
Use this method to construct inlaid squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31