Kies uit onderstaande patronen vier patronen een oneven V, een even V, een oneven H en een even H (n.b.: 1, 3, 5, 7, 9 en 11 is oneven en 2, 4, 6, 8, 10 en 12 is even).
| V1 | V2 | H1 | H2 | ||||||||||||||||||||||||||||||||||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| V3 | V4 | H3 | H4 | ||||||||||||||||||||||||||||||||||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| V5 | V6 | H5 | H6 | ||||||||||||||||||||||||||||||||||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| V7 | V8 | H7 | H8 | ||||||||||||||||||||||||||||||||||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| V9 | V10 | H9 | H10 | ||||||||||||||||||||||||||||||||||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | ||||||||
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | ||||||||
| V11 | V12 | H11 | H12 | ||||||||||||||||||||||||||||||||||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 
    Zet de gekozen 4 patronen in willekeurige volgorde en neem 1x getal uit eerste patroon plus 3x getal uit tweede patroon plus 9x getal uit derde patroon plus 27x getal uit vierde patroon en tel
    daarbij nog eens 1 op.
      
 We kiezen bijvoorbeeld H2-V4-V1-H3.
| Neem 1x getal vanuit patroon H2 | ||||||||
| 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 
| 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 
| 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 
| 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 
| 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 
| 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 
| 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 
| +3x getal vanuit patroon V4 | ||||||||
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 
| 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 
| 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 
| 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 
| + 9x getal vanuit patroon V1 | ||||||||
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 
| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 
| 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 
| 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 
| + 27x getal vanuit patroon H3 +1 | ||||||||
| 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 
| 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 
| 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 
| 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 
| 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 
| 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 
| 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 
| 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 
| 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 
| 
 | ||||||||
| = panmagisch 9x9 vierkant | ||||||||
| 1 | 16 | 22 | 57 | 72 | 78 | 29 | 44 | 50 | 
| 56 | 71 | 77 | 28 | 43 | 49 | 3 | 18 | 24 | 
| 30 | 45 | 51 | 2 | 17 | 23 | 55 | 70 | 76 | 
| 13 | 19 | 7 | 69 | 75 | 63 | 41 | 47 | 35 | 
| 68 | 74 | 62 | 40 | 46 | 34 | 15 | 21 | 9 | 
| 42 | 48 | 36 | 14 | 20 | 8 | 67 | 73 | 61 | 
| 25 | 4 | 10 | 81 | 60 | 66 | 53 | 32 | 38 | 
| 80 | 59 | 65 | 52 | 31 | 37 | 27 | 6 | 12 | 
| 54 | 33 | 39 | 26 | 5 | 11 | 79 | 58 | 64 | 
    
    
 Dit panmagisch 9x9 vierkant is ook 3x3 compact.
    
 Deze methode geeft 6x6x6x6 (keuze even en oneven V en H) x 4x3x2x1 (volgorde patronen) is 31.104 oplossingsmogelijkheden. Als je het resultaat verschuift over het 2x2 tapijt van het
    panmagische 9x9 vierkant, dan krijg je nog veel meer oplossingsmogelijkheden.