Why using sequencial numbers in the magic square? You can also use prime numbers to produce a magic prime square.
3x3 magic prime square (with the smallest possible prime numbers)
| 
 | 
 | 177 | 177 | 177 | 
 | 
| 
 | 177 | 
 | 
 | 
 | 177 | 
| 177 | 
 | 47 | 113 | 17 | 
 | 
| 177 | 
 | 29 | 59 | 89 | 
 | 
| 177 | 
 | 101 | 5 | 71 | 
 | 
Source: Lev Liberant, April 2011
N.B.: Number 1 is officially no prime number. If we allow 1 to be a prime number, we get:
3x3 magic prime square (with the smallest possible prime numbers, including 1)
| 111 | 111 | 111 | |||
| 111 | 111 | ||||
| 111 | 67 | 1 | 43 | ||
| 111 | 13 | 37 | 61 | ||
| 111 | 31 | 73 | 7 | 
3x3 magic prime square 9 sequencial prime numbers
The real numbers are:
| 14800028129 | 
| 14800028141 | 
| 14800028153 | 
| 14800028159 | 
| 14800028171 | 
| 14800028183 | 
| 14800028189 | 
| 14800028201 | 
| 14800028213 | 
| 513 | 513 | 513 | |||
| 513 | 513 | ||||
| 513 | 159 | 153 | 201 | ||
| 513 | 213 | 171 | 129 | ||
| 513 | 141 | 189 | 183 | 
4x4 panmagic prime square
| 240 | 240 | 240 | 240 | |||||
| 240 | 240 | |||||||
| 240 | 7 | 107 | 23 | 103 | ||||
| 240 | 89 | 37 | 73 | 41 | 240 | 240 | ||
| 240 | 97 | 17 | 113 | 13 | 240 | 240 | ||
| 240 | 47 | 79 | 31 | 83 | 240 | 240 | ||
| 240 | 240 | 240 | ||||||
| 240 | 240 | 240 | ||||||
| 240 | 240 | 240 | 
Source: book “De pracht van priemgetallen” by Paul Levrie and Rudi Penne
4x4 symmetric magic prime square
| 9500 | 9500 | 9500 | 9500 | |||
| 9500 | 9500 | |||||
| 9500 | 2837 | 2087 | 2687 | 1889 | ||
| 9500 | 2753 | 1823 | 1223 | 3701 | ||
| 9500 | 1049 | 3527 | 2927 | 1997 | ||
| 9500 | 2861 | 2063 | 2663 | 1913 | 
(4x4 in) 6x6 panmagic prime square
| 
 | 
 | 14250 | 14250 | 14250 | 14250 | 14250 | 14250 | 
 | 
 | 
 | 
| 
 | 14250 | 
 | 
 | 
 | 
 | 
 | 
 | 14250 | 
 | 
 | 
| 14250 | 
 | 1361 | 3491 | 2393 | 2333 | 2963 | 1709 | 
 | 
 | 
 | 
| 14250 | 
 | 1811 | 2837 | 2087 | 2687 | 1889 | 2939 | 
 | 14250 | 14250 | 
| 14250 | 
 | 2819 | 2753 | 1823 | 1223 | 3701 | 1931 | 
 | 14250 | 14250 | 
| 14250 | 
 | 2879 | 1049 | 3527 | 2927 | 1997 | 1871 | 
 | 14250 | 14250 | 
| 14250 | 
 | 2339 | 2861 | 2063 | 2663 | 1913 | 2411 | 
 | 14250 | 14250 | 
| 14250 | 
 | 3041 | 1259 | 2357 | 2417 | 1787 | 3389 | 
 | 14250 | 14250 | 
(4x4 in 6x6 in) 8x8 magic prime square
| 
 | 
 | 19000 | 19000 | 19000 | 19000 | 19000 | 19000 | 19000 | 19000 | 
 | 
| 
 | 19000 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 19000 | 
| 19000 | 
 | 2621 | 2477 | 2039 | 1289 | 3251 | 1583 | 3533 | 2207 | 
 | 
| 19000 | 
 | 3257 | 1361 | 3491 | 2393 | 2333 | 2963 | 1709 | 1493 | 
 | 
| 19000 | 
 | 2609 | 1811 | 2837 | 2087 | 2687 | 1889 | 2939 | 2141 | 
 | 
| 19000 | 
 | 2777 | 2819 | 2753 | 1823 | 1223 | 3701 | 1931 | 1973 | 
 | 
| 19000 | 
 | 2351 | 2879 | 1049 | 3527 | 2927 | 1997 | 1871 | 2399 | 
 | 
| 19000 | 
 | 1283 | 2339 | 2861 | 2063 | 2663 | 1913 | 2411 | 3467 | 
 | 
| 19000 | 
 | 1559 | 3041 | 1259 | 2357 | 2417 | 1787 | 3389 | 3191 | 
 | 
| 19000 | 
 | 2543 | 2273 | 2711 | 3461 | 1499 | 3167 | 1217 | 2129 | 
 | 
Source: A. W. Johnson, Jr., J. Recreational Mathematics 15:2, 1982-83, p. 84
12x12 prime square of J.N. Muncey with the 144 smallest odd prime numbers (with 1)
| 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | 4514 | |||
| 4514 | 4514 | |||||||||||||
| 4514 | 1 | 823 | 821 | 809 | 811 | 797 | 19 | 29 | 313 | 31 | 23 | 37 | ||
| 4514 | 89 | 83 | 211 | 79 | 641 | 631 | 619 | 709 | 617 | 53 | 43 | 739 | ||
| 4514 | 97 | 227 | 103 | 107 | 193 | 557 | 719 | 727 | 607 | 139 | 757 | 281 | ||
| 4514 | 223 | 653 | 499 | 197 | 109 | 113 | 563 | 479 | 173 | 761 | 587 | 157 | ||
| 4514 | 367 | 379 | 521 | 383 | 241 | 467 | 257 | 263 | 269 | 167 | 601 | 599 | ||
| 4514 | 349 | 359 | 353 | 647 | 389 | 331 | 317 | 311 | 409 | 307 | 293 | 449 | ||
| 4514 | 503 | 523 | 233 | 337 | 547 | 397 | 421 | 17 | 401 | 271 | 431 | 433 | ||
| 4514 | 229 | 491 | 373 | 487 | 461 | 251 | 443 | 463 | 137 | 439 | 457 | 283 | ||
| 4514 | 509 | 199 | 73 | 541 | 347 | 191 | 181 | 569 | 577 | 571 | 163 | 593 | ||
| 4514 | 661 | 101 | 643 | 239 | 691 | 701 | 127 | 131 | 179 | 613 | 277 | 151 | ||
| 4514 | 659 | 673 | 677 | 683 | 71 | 67 | 61 | 47 | 59 | 743 | 733 | 41 | ||
| 4514 | 827 | 3 | 7 | 5 | 13 | 11 | 787 | 769 | 773 | 419 | 149 | 751 | 
Source: book “De pracht van priemgetallen” by Paul Levrie and Rudi Penne
4x4 semi bimagic prime square (with smallest possible prime numbers)
| 
 | 
 | 1190 | 1190 | 1190 | 1190 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
| 1190 | 
 | 29 | 293 | 641 | 227 | 
| 1190 | 
 | 277 | 659 | 73 | 181 | 
| 1190 | 
 | 643 | 101 | 337 | 109 | 
| 1190 | 
 | 241 | 137 | 139 | 673 | 
| 
 | 
 | 549100 | 549100 | 549100 | 549100 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
| 549100 | 
 | 841 | 85849 | 410881 | 51529 | 
| 549100 | 
 | 76729 | 434281 | 5329 | 32761 | 
| 549100 | 
 | 413449 | 10201 | 113569 | 11881 | 
| 549100 | 
 | 58081 | 18769 | 19321 | 452929 | 
Source: Article of Christian Boyer, The Mathematical Intelligencer, Vol. 27, N. 2, 2005, pages 52-64
Magic prime square A
| 
 | 
 | 1456 | 1456 | 1456 | 1456 | 
 | 
| 
 | 1456 | 
 | 
 | 
 | 
 | 1456 | 
| 1456 | 
 | 67 | 241 | 577 | 571 | 
 | 
| 1456 | 
 | 547 | 769 | 127 | 13 | 
 | 
| 1456 | 
 | 223 | 139 | 421 | 673 | 
 | 
| 1456 | 
 | 619 | 307 | 331 | 199 | 
 | 
Magic prime square B
| 
 | 
 | 6544 | 6544 | 6544 | 6544 | 
 | 
| 
 | 6544 | 
 | 
 | 
 | 
 | 6544 | 
| 6544 | 
 | 1933 | 1759 | 1423 | 1429 | 
 | 
| 6544 | 
 | 1453 | 1231 | 1873 | 1987 | 
 | 
| 6544 | 
 | 1777 | 1861 | 1579 | 1327 | 
 | 
| 6544 | 
 | 1381 | 1693 | 1669 | 1801 | 
 | 
Magic prime square A + B
| 2000 | 2000 | 2000 | 2000 | 
| 2000 | 2000 | 2000 | 2000 | 
| 2000 | 2000 | 2000 | 2000 | 
| 2000 | 2000 | 2000 | 2000 | 
Source: Designed by John E. Everett (July, 2000)
N.B.: Emily Verbruggen from Belgium send me the prime magic squares from the book "De pracht van priemgetallen".