Neem als eerste patroon (in de lagen 1 t/m 4) 4x Franklin panmagisch 8x8 vierkant en (in de lagen 5 t/m 8) 4x de inverse hiervan. Het tweede patroon bestaat uit de getallen 0 t/m 7 (b.v. in laag 1 vind je in elke rij/kolom/diagonaal 2x of 4x 0 en 2x of 4x 7 achter elkaar).
Neem 1x getal vanuit 1e patroon met Franklin panmagisch 8x8 en de inverse [laag 1]
| 1 | ||||||||
| 1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
| 16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
| 51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
| 62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
| 17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
| 32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
| 35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
| 46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
| 2 | ||||||||
| 1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
| 16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
| 51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
| 62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
| 17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
| 32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
| 35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
| 46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
| 3 | ||||||||
| 1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
| 16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
| 51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
| 62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
| 17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
| 32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
| 35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
| 46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
| 4 | ||||||||
| 1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
| 16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
| 51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
| 62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
| 17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
| 32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
| 35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
| 46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
| 5 | ||||||||
| 64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
| 49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
| 14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
| 3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
| 48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
| 33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
| 30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
| 19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 | |
| 6 | ||||||||
| 64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
| 49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
| 14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
| 3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
| 48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
| 33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
| 30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
| 19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 | |
| 7 | ||||||||
| 64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
| 49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
| 14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
| 3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
| 48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
| 33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
| 30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
| 19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 | |
| 8 | ||||||||
| 64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
| 49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
| 14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
| 3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
| 48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
| 33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
| 30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
| 19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 |
+ 64x getal vanuit 2e patroon met getallen 0 t/m 7 [laag 1]
| 1 | ||||||||
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 2 | ||||||||
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
| 3 | ||||||||
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 4 | ||||||||
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
| 5 | ||||||||
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 6 | ||||||||
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
| 7 | ||||||||
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 8 | ||||||||
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
| 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 |
= 8x8x8 diagonaal magische kubus [laag 1]
| 1 | ||||||||
| 1 | 55 | 462 | 508 | 2 | 56 | 461 | 507 | |
| 16 | 58 | 451 | 501 | 15 | 57 | 452 | 502 | |
| 499 | 453 | 64 | 10 | 500 | 454 | 63 | 9 | |
| 510 | 460 | 49 | 7 | 509 | 459 | 50 | 8 | |
| 465 | 487 | 30 | 44 | 466 | 488 | 29 | 43 | |
| 480 | 490 | 19 | 37 | 479 | 489 | 20 | 38 | |
| 35 | 21 | 496 | 474 | 36 | 22 | 495 | 473 | |
| 46 | 28 | 481 | 471 | 45 | 27 | 482 | 472 | |
| 2 | ||||||||
| 449 | 503 | 14 | 60 | 450 | 504 | 13 | 59 | |
| 464 | 506 | 3 | 53 | 463 | 505 | 4 | 54 | |
| 51 | 5 | 512 | 458 | 52 | 6 | 511 | 457 | |
| 62 | 12 | 497 | 455 | 61 | 11 | 498 | 456 | |
| 17 | 39 | 478 | 492 | 18 | 40 | 477 | 491 | |
| 32 | 42 | 467 | 485 | 31 | 41 | 468 | 486 | |
| 483 | 469 | 48 | 26 | 484 | 470 | 47 | 25 | |
| 494 | 476 | 33 | 23 | 493 | 475 | 34 | 24 | |
| 3 | ||||||||
| 65 | 119 | 398 | 444 | 66 | 120 | 397 | 443 | |
| 80 | 122 | 387 | 437 | 79 | 121 | 388 | 438 | |
| 435 | 389 | 128 | 74 | 436 | 390 | 127 | 73 | |
| 446 | 396 | 113 | 71 | 445 | 395 | 114 | 72 | |
| 401 | 423 | 94 | 108 | 402 | 424 | 93 | 107 | |
| 416 | 426 | 83 | 101 | 415 | 425 | 84 | 102 | |
| 99 | 85 | 432 | 410 | 100 | 86 | 431 | 409 | |
| 110 | 92 | 417 | 407 | 109 | 91 | 418 | 408 | |
| 4 | ||||||||
| 385 | 439 | 78 | 124 | 386 | 440 | 77 | 123 | |
| 400 | 442 | 67 | 117 | 399 | 441 | 68 | 118 | |
| 115 | 69 | 448 | 394 | 116 | 70 | 447 | 393 | |
| 126 | 76 | 433 | 391 | 125 | 75 | 434 | 392 | |
| 81 | 103 | 414 | 428 | 82 | 104 | 413 | 427 | |
| 96 | 106 | 403 | 421 | 95 | 105 | 404 | 422 | |
| 419 | 405 | 112 | 90 | 420 | 406 | 111 | 89 | |
| 430 | 412 | 97 | 87 | 429 | 411 | 98 | 88 | |
| 5 | ||||||||
| 192 | 138 | 371 | 325 | 191 | 137 | 372 | 326 | |
| 177 | 135 | 382 | 332 | 178 | 136 | 381 | 331 | |
| 334 | 380 | 129 | 183 | 333 | 379 | 130 | 184 | |
| 323 | 373 | 144 | 186 | 324 | 374 | 143 | 185 | |
| 368 | 346 | 163 | 149 | 367 | 345 | 164 | 150 | |
| 353 | 343 | 174 | 156 | 354 | 344 | 173 | 155 | |
| 158 | 172 | 337 | 359 | 157 | 171 | 338 | 360 | |
| 147 | 165 | 352 | 362 | 148 | 166 | 351 | 361 | |
| 6 | ||||||||
| 384 | 330 | 179 | 133 | 383 | 329 | 180 | 134 | |
| 369 | 327 | 190 | 140 | 370 | 328 | 189 | 139 | |
| 142 | 188 | 321 | 375 | 141 | 187 | 322 | 376 | |
| 131 | 181 | 336 | 378 | 132 | 182 | 335 | 377 | |
| 176 | 154 | 355 | 341 | 175 | 153 | 356 | 342 | |
| 161 | 151 | 366 | 348 | 162 | 152 | 365 | 347 | |
| 350 | 364 | 145 | 167 | 349 | 363 | 146 | 168 | |
| 339 | 357 | 160 | 170 | 340 | 358 | 159 | 169 | |
| 7 | ||||||||
| 256 | 202 | 307 | 261 | 255 | 201 | 308 | 262 | |
| 241 | 199 | 318 | 268 | 242 | 200 | 317 | 267 | |
| 270 | 316 | 193 | 247 | 269 | 315 | 194 | 248 | |
| 259 | 309 | 208 | 250 | 260 | 310 | 207 | 249 | |
| 304 | 282 | 227 | 213 | 303 | 281 | 228 | 214 | |
| 289 | 279 | 238 | 220 | 290 | 280 | 237 | 219 | |
| 222 | 236 | 273 | 295 | 221 | 235 | 274 | 296 | |
| 211 | 229 | 288 | 298 | 212 | 230 | 287 | 297 | |
| 8 | ||||||||
| 320 | 266 | 243 | 197 | 319 | 265 | 244 | 198 | |
| 305 | 263 | 254 | 204 | 306 | 264 | 253 | 203 | |
| 206 | 252 | 257 | 311 | 205 | 251 | 258 | 312 | |
| 195 | 245 | 272 | 314 | 196 | 246 | 271 | 313 | |
| 240 | 218 | 291 | 277 | 239 | 217 | 292 | 278 | |
| 225 | 215 | 302 | 284 | 226 | 216 | 301 | 283 | |
| 286 | 300 | 209 | 231 | 285 | 299 | 210 | 232 | |
| 275 | 293 | 224 | 234 | 276 | 294 | 223 | 233 |
N.B.: De magische kubus is ook panmagisch in de lagen en elke 1/2 rij/kolom in de lagen geeft 1/2 magische som.
Voor check of alle getallen zich in de magische kubus bevinden en optelling van de getallen tot de juiste magische som leidt, zie onderstaande download.
Met methode Samengesteld 1 (S1) kun je diagonaal magische kubussen maken voor orde is veelvoud van 4. Zie op deze website uitgewerkt voor:
8x8x8, 12x12x12, 20x20x20, 24x24x24 en 28x28x28